Geometry & Topology

The Binet–Legendre Metric in Finsler Geometry

Vladimir S Matveev and Marc Troyanov

Full-text: Open access

Abstract

For every Finsler metric F we associate a Riemannian metric gF (called the Binet–Legendre metric). The Riemannian metric gF behaves nicely under conformal deformation of the Finsler metric F, which makes it a powerful tool in Finsler geometry. We illustrate that by solving a number of named Finslerian geometric problems. We also generalize and give new and shorter proofs of a number of known results. In particular we answer a question of M Matsumoto about local conformal mapping between two Minkowski spaces, we describe all possible conformal self maps and all self similarities on a Finsler manifold. We also classify all compact conformally flat Finsler manifolds, we solve a conjecture of S Deng and Z Hou on the Berwaldian character of locally symmetric Finsler spaces, and extend a classic result by H C Wang about the maximal dimension of the isometry groups of Finsler manifolds to manifolds of all dimensions.

Most proofs in this paper go along the following scheme: using the correspondence FgF we reduce the Finslerian problem to a similar problem for the Binet–Legendre metric, which is easier and is already solved in most cases we consider. The solution of the Riemannian problem provides us with the additional information that helps to solve the initial Finslerian problem.

Our methods apply even in the absence of the strong convexity assumption usually assumed in Finsler geometry. The smoothness hypothesis can also be replaced by a weaker partial smoothness, a notion we introduce in the paper. Our results apply therefore to a vast class of Finsler metrics not usually considered in the Finsler literature.

Article information

Source
Geom. Topol., Volume 16, Number 4 (2012), 2135-2170.

Dates
Received: 19 January 2012
Revised: 15 May 2012
Accepted: 9 July 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732481

Digital Object Identifier
doi:10.2140/gt.2012.16.2135

Mathematical Reviews number (MathSciNet)
MR3033515

Zentralblatt MATH identifier
1258.53080

Subjects
Primary: 53C60: Finsler spaces and generalizations (areal metrics) [See also 58B20] 58B20: Riemannian, Finsler and other geometric structures [See also 53C20, 53C60]
Secondary: 53C35: Symmetric spaces [See also 32M15, 57T15] 30C20: Conformal mappings of special domains 53A30: Conformal differential geometry

Keywords
Finsler metrics conformal transformations conformal invariants locally symmetric spaces Berwald spaces Killing vector fields

Citation

Matveev, Vladimir S; Troyanov, Marc. The Binet–Legendre Metric in Finsler Geometry. Geom. Topol. 16 (2012), no. 4, 2135--2170. doi:10.2140/gt.2012.16.2135. https://projecteuclid.org/euclid.gt/1513732481


Export citation

References

  • D V Alekseevskiĭ, Groups of conformal transformations of Riemannian spaces, Mat. Sb. 89(131) (1972) 280–296, 356 In Russian; translated in Math. USSR-Sb 18: (1972), 285–301
  • D Bao, On two curvature-driven problems in Riemann–Finsler geometry, from: “Finsler geometry, Sapporo 2005–-in memory of Makoto Matsumoto”, (S V Sabau, H Shimada, editors), Adv. Stud. Pure Math. 48, Math. Soc. Japan, Tokyo (2007) 19–71
  • D Bao, S-S Chern, Z Shen, An introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics 200, Springer, New York (2000)
  • V N Berestovskiĭ, Generalized symmetric spaces, Sibirsk. Mat. Zh. 26 (1985) 3–17, 221
  • M Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279–330
  • H Busemann, The geometry of geodesics, Academic Press, New York (1955)
  • H Busemann, B B Phadke, Two theorems on general symmetric spaces, Pacific J. Math. 92 (1981) 39–48
  • P Centore, Volume forms in Finsler spaces, Houston J. Math. 25 (1999) 625–640
  • S-S Chern, Local equivalence and Euclidean connections in Finsler spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A. 5 (1948) 95–121
  • S-S Chern, Z Shen, Riemann–Finsler geometry, Nankai Tracts in Mathematics 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2005)
  • G de Rham, Sur la reductibilité d'un espace de Riemann, Comment. Math. Helv. 26 (1952) 328–344
  • S Deng, Z Hou, The group of isometries of a Finsler space, Pacific J. Math. 207 (2002) 149–155
  • S Deng, Z Hou, Homogeneous Finsler spaces of negative curvature, J. Geom. Phys. 57 (2007) 657–664
  • S Deng, Z Hou, On symmetric Finsler spaces, Israel J. Math. 162 (2007) 197–219
  • J Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996) 277–291
  • P Foulon, Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1127–1132
  • D Fried, Closed similarity manifolds, Comment. Math. Helv. 55 (1980) 576–582
  • P Hartman, Ordinary differential equations, John Wiley & Sons, New York (1964)
  • E Heil, D Laugwitz, Finsler spaces with similarity are Minkowski spaces, Tensor 28 (1974) 59–62
  • S Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)
  • S Ishihara, Homogeneous Riemannian spaces of four dimensions, J. Math. Soc. Japan 7 (1955) 345–370
  • C-W Kim, Locally symmetric positively curved Finsler spaces, Arch. Math. (Basel) 88 (2007) 378–384
  • S Kobayashi, T Nagano, Riemannian manifolds with abundant isometries, from: “Differential geometry (in honor of Kentaro Yano)”, (M Obata, S Kobayashi, editors), Kinokuniya, Tokyo (1972) 195–219
  • N H Kuiper, Compact spaces with a local structure determined by the group of similarity transformations in $E\sp n$, Nederl. Akad. Wetensch., Proc. 53 (1950) 1178–1185 In Russian; translated in Indagationes Math. 12: (1950) 411–418
  • R S Kulkarni, Conformally flat manifolds, Proc. Nat. Acad. Sci. U.S.A. 69 (1972) 2675–2676
  • A M Legendre, Traité des fonctions elliptiques et des intégrales eulériennes, Volume 1, Huzard-Courcier (1825)
  • J Liouville, Extension au cas des trois dimensions de la question du tracé géographique, Applications de l'analyse à la géométrie (1850) 609–617
  • J Liouville, Théorème sur l'équation $dx^2+dy^2+dz^2 = \lambda (d\alpha^2 + d\beta^2 + d\gamma^2)$, J. Math. Pures et Appliquées (1850)
  • R L Lovas, J Szilasi, Homotheties of Finsler manifolds, SUT J. Math. 46 (2010) 23–34
  • E Lutwak, D Yang, G Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000) 375–390
  • E Lutwak, D Yang, G Zhang, $L\sb p$ John ellipsoids, Proc. London Math. Soc. 90 (2005) 497–520
  • M Matsumoto, Conformally Berwald and conformally flat Finsler spaces, Publ. Math. Debrecen 58 (2001) 275–285
  • S Matsumoto, Foundations of flat conformal structure, from: “Aspects of low-dimensional manifolds”, (Y Matsumoto, S Morita, editors), Adv. Stud. Pure Math. 20, Kinokuniya, Tokyo (1992) 167–261
  • V S Matveev, Riemannian metrics having common geodesics with Berwald metrics, Publ. Math. Debrecen 74 (2009) 405–416
  • V S Matveev, H-B Rademacher, M Troyanov, A Zeghib, Finsler conformal Lichnerowicz–Obata conjecture, Ann. Inst. Fourier (Grenoble) 59 (2009) 937–949
  • V D Milman, A Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$–dimensional space, from: “Geometric aspects of functional analysis (1987–88)”, (J Lindenstrauss, V D Milman, editors), Lecture Notes in Math. 1376, Springer, Berlin (1989) 64–104
  • D Montgomery, H Samelson, Transformation groups of spheres, Ann. of Math. 44 (1943) 454–470
  • P Planche, Géométrie de Finsler sur les espaces symétriques, Thèse Genève (1995)
  • P Planche, Structures de Finsler invariantes sur les espaces symétriques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1455–1458
  • R Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995) 464–481
  • R Schoen, S-T Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988) 47–71
  • J Simons, On the transitivity of holonomy systems, Ann. of Math. 76 (1962) 213–234
  • Z I Szabó, Berwald metrics constructed by Chevalley's polynomials
  • Z I Szabó, Positive definite Berwald spaces, Structure theorems on Berwald spaces, Tensor 35 (1981) 25–39
  • I Vaisman, C Reischer, Local similarity manifolds, Ann. Mat. Pura Appl. 135 (1983) 279–291
  • C Vincze, A new proof of Szabó's theorem on the Riemann-metrizability of Berwald manifolds, Acta Math. Acad. Paedagog. Nyházi. 21 (2005) 199–204
  • H-C Wang, On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc. 22 (1947) 5–9
  • K Yano, On $n$–dimensional Riemannian spaces admitting a group of motions of order $n(n-1)/2+1$, Trans. Amer. Math. Soc. 74 (1953) 260–279