Geometry & Topology

The topology of toric symplectic manifolds

Dusa McDuff

Full-text: Open access

Abstract

This is a collection of results on the topology of toric symplectic manifolds. Using an idea of Borisov, we show that a closed symplectic manifold supports at most a finite number of toric structures. Further, the product of two projective spaces of complex dimension at least two (and with a standard product symplectic form) has a unique toric structure. We then discuss various constructions, using wedging to build a monotone toric symplectic manifold whose center is not the unique point displaceable by probes, and bundles and blow ups to form manifolds with more than one toric structure. The bundle construction uses the McDuff–Tolman concept of mass linear function. Using Timorin’s description of the cohomology algebra via the volume function we develop a cohomological criterion for a function to be mass linear, and explain its relation to Shelukhin’s higher codimension barycenters.

Article information

Source
Geom. Topol., Volume 15, Number 1 (2011), 145-190.

Dates
Received: 9 June 2010
Revised: 29 September 2010
Accepted: 15 November 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732274

Digital Object Identifier
doi:10.2140/gt.2011.15.145

Mathematical Reviews number (MathSciNet)
MR2776842

Zentralblatt MATH identifier
1218.14045

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20] 53D05: Symplectic manifolds, general
Secondary: 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx] 57S15: Compact Lie groups of differentiable transformations

Keywords
toric symplectic manifold monotone symplectic manifold Fano polytope monotone polytope mass linear function Delzant polytope center of gravity cohomological rigidity

Citation

McDuff, Dusa. The topology of toric symplectic manifolds. Geom. Topol. 15 (2011), no. 1, 145--190. doi:10.2140/gt.2011.15.145. https://projecteuclid.org/euclid.gt/1513732274


Export citation

References

  • V V Batyrev, Toric Fano threefolds, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981) 704–717, 927
  • S Choi, M Masuda, D Y Suh, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362 (2010) 1097–1112
  • S Choi, T Panov, D Y Suh, Toric cohomological rigidity of simple convex polytopes, to appear in J. London Math. Soc.
  • M W Davis, T Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417–451
  • T Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988) 315–339
  • R Fintushel, R J Stern, Knots, links, and $4$–manifolds, Invent. Math. 134 (1998) 363–400
  • K Fukaya, Y-G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010) 23–174
  • C Haase, I V Melnikov, The reflexive dimension of a lattice polytope, Ann. Comb. 10 (2006) 211–217
  • Y Karshon, L Kessler, M Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions, J. Symplectic Geom. 5 (2007) 139–166
  • J Kędra, D McDuff, Homotopy properties of Hamiltonian group actions, Geom. Topol. 9 (2005) 121–162
  • F Lalonde, D McDuff, L Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) 369–385
  • E Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995) 247–258
  • M Masuda, Symmetry of a symplectic toric manifold, to appear in J. Symp. Geom.
  • M Masuda, Equivariant cohomology distinguishes toric manifolds, Adv. Math. 218 (2008) 2005–2012
  • M Masuda, D Y Suh, Classification problems of toric manifolds via topology, from: “Toric topology”, (M Harada, Y Karson, M Masuda, T Panov, editors), Contemp. Math. 460, Amer. Math. Soc. (2008) 273–286
  • D McDuff, Displacing Lagrangian toric fibers via probes, to appear in Geom. Topol.
  • D McDuff, Examples of symplectic structures, Invent. Math. 89 (1987) 13–36
  • D McDuff, Quantum homology of fibrations over $S\sp 2$, Internat. J. Math. 11 (2000) 665–721
  • D McDuff, L Polterovich, Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405–434 With an appendix by Y Karshon
  • D McDuff, D Salamon, $J$–holomorphic curves and quantum cohomology, Univ. Lecture Series 6, Amer. Math. Soc. (1994)
  • D McDuff, S Tolman, Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. (2006) Art. ID 72826, 77pp
  • D McDuff, S Tolman, Polytopes with mass linear functions. I, Int. Math. Res. Not. (2010) 1506–1574
  • D McDuff, S Tolman, Polytopes with mass linear functions. II, in preparation
  • A Paffenholz, Private communication (2009) Available at \setbox0\makeatletter\@url http://ehrhart.math.fu-berlin.de/people/paffenho/other-examples.html {\unhbox0
  • A Pelayo, Topology of spaces of equivariant symplectic embeddings, Proc. Amer. Math. Soc. 135 (2007) 277–288
  • A Pelayo, S Tolman, Fixed points of symplectic periodic flows, to appear in Ergod. Theory Dynam. Systems
  • M Pinsonnault, Maximal compact tori in the Hamiltonian group of $4$–dimensional symplectic manifolds, J. Mod. Dyn. 2 (2008) 431–455
  • Y Ruan, Symplectic topology on algebraic $3$–folds, J. Differential Geom. 39 (1994) 215–227
  • E Shelukhin, Remarks on invariants of Hamiltonian loops, J. Topol. Anal. 2 (2010) 277–325
  • V A Timorin, An analogue of the Hodge–Riemann relations for simple convex polyhedra, Uspekhi Mat. Nauk 54 (1999) 113–162
  • K Watanabe, M Watanabe, The classification of Fano $3$–folds with torus embeddings, Tokyo J. Math. 5 (1982) 37–48