Geometry & Topology
- Geom. Topol.
- Volume 14, Number 5 (2010), 2497-2581.
Embedded contact homology and Seiberg–Witten Floer cohomology I
Full-text: Open access
Abstract
This is the first of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact –manifold with a given contact –form. This paper describes what is involved in the construction.
Article information
Source
Geom. Topol., Volume 14, Number 5 (2010), 2497-2581.
Dates
Received: 15 November 2008
Accepted: 21 August 2009
First available in Project Euclid: 20 December 2017
Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732248
Digital Object Identifier
doi:10.2140/gt.2010.14.2497
Mathematical Reviews number (MathSciNet)
MR2746723
Zentralblatt MATH identifier
1275.57037
Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]
Keywords
Seiberg–Witten equations Floer homology contact homology
Citation
Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology I. Geom. Topol. 14 (2010), no. 5, 2497--2581. doi:10.2140/gt.2010.14.2497. https://projecteuclid.org/euclid.gt/1513732248
References
- F Bourgeois, K Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123–146 Mathematical Reviews (MathSciNet): MR2092725
Zentralblatt MATH: 1060.53080
Digital Object Identifier: doi:10.1007/s00209-004-0656-x - A Floer, Morse theory for fixed points of symplectic diffeomorphisms, Bull. Amer. Math. Soc. $($N.S.$)$ 16 (1987) 279–281 Mathematical Reviews (MathSciNet): MR876964
Zentralblatt MATH: 0617.53042
Digital Object Identifier: doi:10.1090/S0273-0979-1987-15517-0
Project Euclid: euclid.bams/1183553837 - A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513–547 Mathematical Reviews (MathSciNet): MR965228
Zentralblatt MATH: 0674.57027
Digital Object Identifier: doi:10.4310/jdg/1214442477
Project Euclid: euclid.jdg/1214442477 - H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515–563 Mathematical Reviews (MathSciNet): MR1244912
Zentralblatt MATH: 0797.58023
Digital Object Identifier: doi:10.1007/BF01232679 - H Hofer, Dynamics, topology, and holomorphic curves, from: “Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)”, Extra Vol. I (1998) 255–280
- H Hofer, Holomorphic curves and dynamics in dimension three, from: “Symplectic geometry and topology (Park City, UT, 1997)”, (Y Eliashberg, L Traynor, editors), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35–101
- H Hofer, Holomorphic curves and real three-dimensional dynamics, Geom. Funct. Anal. (2000) 674–704 GAFA 2000 (Tel Aviv, 1999)
- H Hofer, K Wysocki, E Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270–328 Mathematical Reviews (MathSciNet): MR1334869
Zentralblatt MATH: 0845.57027
Digital Object Identifier: doi:10.1007/BF01895669 - H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337–379 Mathematical Reviews (MathSciNet): MR1395676
Zentralblatt MATH: 0861.58018
Digital Object Identifier: doi:10.1016/S0294-1449(16)30108-1 - H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: “Topics in nonlinear analysis”, (J Escher, G Simonett, editors), Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser, Basel (1999) 381–475
- M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313–361
- M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T\sp 3$, Geom. Topol. 10 (2006) 169–266
- M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007) 43–137 Mathematical Reviews (MathSciNet): MR2371184
Zentralblatt MATH: 1157.53047
Digital Object Identifier: doi:10.4310/JSG.2007.v5.n1.a5
Project Euclid: euclid.jsg/1197491304 - M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. II, J. Symplectic Geom. 7 (2009) 29–133 Mathematical Reviews (MathSciNet): MR2491716
Zentralblatt MATH: 1193.53183
Digital Object Identifier: doi:10.4310/JSG.2009.v7.n1.a2
Project Euclid: euclid.jsg/1238592310 - A Jaffe, C Taubes, Vortices and monopoles. Structure of static gauge theories, Progress in Physics 2, Birkhäuser, Boston (1980)
- P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
- C B Morrey, Jr, Multiple integrals in the calculus of variations, Grund. der math. Wissenschaften 130, Springer, New York (1966) Mathematical Reviews (MathSciNet): MR0202511
- D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37–41, 96 Mathematical Reviews (MathSciNet): MR783704
- R Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math. 61 (2008) 1631–1684 Mathematical Reviews (MathSciNet): MR2456182
Zentralblatt MATH: 1158.53068
Digital Object Identifier: doi:10.1002/cpa.20224 - C H Taubes, Arbitrary $N$–vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys. 72 (1980) 277–292 Mathematical Reviews (MathSciNet): MR573986
Digital Object Identifier: doi:10.1007/BF01197552
Project Euclid: euclid.cmp/1103907703 - C H Taubes, The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221–238 Mathematical Reviews (MathSciNet): MR1324704
Zentralblatt MATH: 0854.57020
Digital Object Identifier: doi:10.4310/MRL.1995.v2.n2.a10 - C H Taubes, Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, (R Wentworth, editor), First Int. Press Lecture Ser. 2, Int. Press, Somerville, MA (2000) Mathematical Reviews (MathSciNet): MR1798809
- C H Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569–587 Mathematical Reviews (MathSciNet): MR2379805
Zentralblatt MATH: 1178.58009
Digital Object Identifier: doi:10.4310/CAG.2007.v15.n3.a5 - C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117–2202 Mathematical Reviews (MathSciNet): MR2350473
Zentralblatt MATH: 1135.57015
Digital Object Identifier: doi:10.2140/gt.2007.11.2117 - C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337–1417 Mathematical Reviews (MathSciNet): MR2496048
Zentralblatt MATH: 1200.57018
Digital Object Identifier: doi:10.2140/gt.2009.13.1337 - C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010) 2583–2720
- C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010) 2721–2817
- C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010) 2819–2960 Mathematical Reviews (MathSciNet): MR2746726
Zentralblatt MATH: 1276.57024
Digital Object Identifier: doi:10.2140/gt.2010.14.2819 - C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology V, Geom. Topol. 14 (2010) 2962–3000 Mathematical Reviews (MathSciNet): MR2746727
Zentralblatt MATH: 1276.57024
Digital Object Identifier: doi:10.2140/gt.2010.14.2961
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Embedded contact homology and Seiberg–Witten Floer cohomology II
Taubes, Clifford Henry, Geometry & Topology, 2010 - Embedded contact homology and Seiberg–Witten Floer cohomology III
Taubes, Clifford Henry, Geometry & Topology, 2010 - Embedded contact homology and Seiberg–Witten Floer cohomology IV
Taubes, Clifford Henry, Geometry & Topology, 2010
- Embedded contact homology and Seiberg–Witten Floer cohomology II
Taubes, Clifford Henry, Geometry & Topology, 2010 - Embedded contact homology and Seiberg–Witten Floer cohomology III
Taubes, Clifford Henry, Geometry & Topology, 2010 - Embedded contact homology and Seiberg–Witten Floer cohomology IV
Taubes, Clifford Henry, Geometry & Topology, 2010 - Embedded contact homology and Seiberg–Witten Floer cohomology V
Taubes, Clifford Henry, Geometry & Topology, 2010 - The absolute gradings on embedded contact homology and Seiberg–Witten Floer cohomology
Cristofaro-Gardiner, Daniel, Algebraic & Geometric Topology, 2013 - Periodic Floer homology and Seiberg-Witten-Floer cohomology
Lee, Yi-Jen and Taubes, Clifford Henry, Journal of Symplectic Geometry, 2012 - The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field
Taubes, Clifford Henry, Geometry & Topology, 2009 - Torsion, TQFT, and Seiberg–Witten invariants of $3$–manifolds
Mark, Thomas E, Geometry & Topology, 2002 - The periodic Floer homology of a Dehn twist
Hutchings, Michael and Sullivan, Michael G, Algebraic & Geometric Topology, 2005 - Seiberg–Witten–Floer stable homotopy type of three-manifolds with $b_1=0$
Manolescu, Ciprian, Geometry & Topology, 2003