Geometry & Topology

Riemann–Roch theorems and elliptic genus for virtually smooth schemes

Barbara Fantechi and Lothar Göttsche

Full-text: Open access

Abstract

For a proper scheme X with a fixed 1–perfect obstruction theory E, we define virtual versions of holomorphic Euler characteristic, χy–genus and elliptic genus; they are deformation invariant and extend the usual definition in the smooth case. We prove virtual versions of the Grothendieck–Riemann–Roch and Hirzebruch–Riemann–Roch theorems. We show that the virtual χy–genus is a polynomial and use this to define a virtual topological Euler characteristic. We prove that the virtual elliptic genus satisfies a Jacobi modularity property; we state and prove a localization theorem in the toric equivariant case. We show how some of our results apply to moduli spaces of stable sheaves.

Article information

Source
Geom. Topol., Volume 14, Number 1 (2010), 83-115.

Dates
Received: 7 February 2008
Revised: 15 May 2009
Accepted: 7 September 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732172

Digital Object Identifier
doi:10.2140/gt.2010.14.83

Mathematical Reviews number (MathSciNet)
MR2578301

Zentralblatt MATH identifier
1194.14017

Subjects
Primary: 14C40: Riemann-Roch theorems [See also 19E20, 19L10]
Secondary: 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15] 57R20: Characteristic classes and numbers

Keywords
Riemann–Roch theorems virtual fundamental class genus

Citation

Fantechi, Barbara; Göttsche, Lothar. Riemann–Roch theorems and elliptic genus for virtually smooth schemes. Geom. Topol. 14 (2010), no. 1, 83--115. doi:10.2140/gt.2010.14.83. https://projecteuclid.org/euclid.gt/1513732172


Export citation

References

  • P Aluffi, Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc. 351 (1999) 3989–4026
  • K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45–88
  • L A Borisov, A Libgober, Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math. 140 (2000) 453–485
  • K Chandrasekharan, Elliptic functions, Grund. der Math. Wissenschaften 281, Springer, Berlin (1985)
  • I Ciocan-Fontanine, M Kapranov, Derived Quot schemes, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 403–440
  • I Ciocan-Fontanine, M Kapranov, Derived Hilbert schemes, J. Amer. Math. Soc. 15 (2002) 787–815
  • I Ciocan-Fontanine, M Kapranov, Virtual fundamental classes via dg-manifolds, Geom. Topol. 13 (2009) 1779–1804
  • F Denef, G Moore, Split states, entropy enigmas, holes and halos
  • W Fulton, Intersection theory, second edition, Ergebnisse der Math. und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Math. 2, Springer, Berlin (1998)
  • L G öttsche, Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces, Math. Z. 223 (1996) 247–260
  • L G öttsche, T Mochizuki, H Nakajima, K Yoshioka, in preparation
  • L G öttsche, H Nakajima, K Yoshioka, $K$–theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Quarterly 5 (2009) 1029–1111
  • T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487–518
  • R Hartshorne, Algebraic geometry, Graduate Texts in Math. 5252, Springer, New York (1977)
  • G Höhn, Komplexe elliptische Geschlechter und $S^1$–äquivariante Kobordismustheorie, Diplomarbeit, Universität Bonn (1991)
  • R Joshua, Riemann–Roch for algebraic stacks III. virtual structure sheaves and virtual fundamental classes, Preprint (2005) Available at http://www.math.ohio-state.edu/\char'176joshua/
  • R Joshua, Bredon-style homology, cohomology and Riemann–Roch for algebraic stacks, Adv. Math. 209 (2007) 1–68
  • M Kontsevich, Enumeration of rational curves via torus actions, from: “The moduli space of curves (Texel Island, 1994)”, (R Dijkgraaf, C Faber, G van der Geer, editors), Progr. Math. 129, Birkhäuser, Boston (1995) 335–368
  • A Kresch, On the geometry of Deligne-Mumford stacks, from: “Algebraic geometry–-Seattle 2005. Part 1”, (D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus, editors), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 259–271
  • I M Krichever, Generalized elliptic genera and Baker–Akhiezer functions, Mat. Zametki 47 (1990) 34–45, 158
  • Y-P Lee, Quantum $K$–theory. I. Foundations, Duke Math. J. 121 (2004) 389–424
  • J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119–174
  • T Mochizuki, Note on the transition of $K$–theory invariants, Preprint (2007)
  • T Mochizuki, Donaldson type invariants for algebraic surfaces. Transition of moduli stacks, Lecture Notes in Math. 1972, Springer, Berlin (2009)
  • C Vafa, E Witten, A strong coupling test of $S$–duality, Nuclear Phys. B 431 (1994) 3–77