Geometry & Topology

Sutured Floer homology and invariants of Legendrian and transverse knots

John Etnyre, David Vela-Vick, and Rumen Zarev

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/gt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Using contact-geometric techniques and sutured Floer homology, we present an alternate formulation of the minus and plus versions of knot Floer homology. We further show how natural constructions in the realm of contact geometry give rise to much of the formal structure relating the various versions of Heegaard Floer homology. In addition, to a Legendrian or transverse knot K (Y,ξ) we associate distinguished classes EH(K) HFK(Y,K) and EH(K) HFK+(Y,K), which are each invariant under Legendrian or transverse isotopies of K. The distinguished class EH is shown to agree with the Legendrian/transverse invariant defined by Lisca, Ozsváth, Stipsicz and Szabó despite a strikingly dissimilar definition. While our definitions and constructions only involve sutured Floer homology and contact geometry, the identification of our invariants with known invariants uses bordered sutured Floer homology to make explicit computations of maps between sutured Floer homology groups.

Article information

Source
Geom. Topol., Volume 21, Number 3 (2017), 1469-1582.

Dates
Received: 4 September 2014
Revised: 25 April 2016
Accepted: 17 August 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1510859206

Digital Object Identifier
doi:10.2140/gt.2017.21.1469

Mathematical Reviews number (MathSciNet)
MR3650078

Zentralblatt MATH identifier
06726508

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 57R58: Floer homology 57R17: Symplectic and contact topology

Keywords
Legendrian knots transverse knots Heegaard Floer homology

Citation

Etnyre, John; Vela-Vick, David; Zarev, Rumen. Sutured Floer homology and invariants of Legendrian and transverse knots. Geom. Topol. 21 (2017), no. 3, 1469--1582. doi:10.2140/gt.2017.21.1469. https://projecteuclid.org/euclid.gt/1510859206


Export citation

References

  • J A Baldwin, S Sivek, A contact invariant in sutured monopole homology, preprint (2014)
  • J A Baldwin, S Sivek, Instanton Floer homology and contact structures, Selecta Math. 22 (2016) 939–978
  • J A Baldwin, D S Vela-Vick, V Vértesi, On the equivalence of Legendrian and transverse invariants in knot Floer homology, Geom. Topol. 17 (2013) 925–974
  • M Bökstedt, A Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993) 209–234
  • J Epstein, D Fuchs, M Meyer, Chekanov–Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001) 89–106
  • J B Etnyre, Legendrian and transversal knots, from “Handbook of knot theory” (W Menasco, M Thistlethwaite, editors), Elsevier, Amsterdam (2005) 105–185
  • J B Etnyre, K Honda, Knots and contact geometry, I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63–120
  • J B Etnyre, K Honda, Cabling and transverse simplicity, Ann. of Math. 162 (2005) 1305–1333
  • J B Etnyre, D S Vela-Vick, Torsion and open book decompositions, Int. Math. Res. Not. 2010 (2010) 4385–4398
  • D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445–503
  • P Ghiggini, K Honda, J V Horn-Morris, The vanishing of the contact invariant in the presence of torsion, preprint (2008)
  • E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615–689
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from “Proceedings of the International Congress of Mathematicians, II” (T Li, editor), Higher Ed. Press, Beijing (2002) 405–414
  • M Golla, Comparing invariants of Legendrian knots, Quantum Topol. 6 (2015) 365–402
  • M Golla, Ozsváth–Szabó invariants of contact surgeries, Geom. Topol. 19 (2015) 171–235
  • K Honda, Contact structure, Heegaard Floer homology and triangulated categories, in preparation
  • K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309–368
  • K Honda, W H Kazez, G Matić, Contact structures, sutured Floer homology and TQFT, preprint (2008)
  • K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637–676
  • K Honda, Y Tian, Contact categories of disks, preprint (2016)
  • A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429–1457
  • A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299–350
  • R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: invariance and pairing, preprint (2008)
  • R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015) 525–724
  • P Lisca, P Ozsváth, A I Stipsicz, Z Szabó, Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc. 11 (2009) 1307–1363
  • P Lisca, A I Stipsicz, Contact surgery and transverse invariants, J. Topol. 4 (2011) 817–834
  • L Ng, P Ozsváth, D Thurston, Transverse knots distinguished by knot Floer homology, J. Symplectic Geom. 6 (2008) 461–490
  • P Ozsváth, A I Stipsicz, Contact surgeries and the transverse invariant in knot Floer homology, J. Inst. Math. Jussieu 9 (2010) 601–632
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1–68
  • P Ozsváth, Z Szabó, D Thurston, Legendrian knots, transverse knots and combinatorial Floer homology, Geom. Topol. 12 (2008) 941–980
  • V G B Ramos, Y Huang, An absolute grading on Heegaard Floer homology by homotopy classes of oriented $2$–plane fields, preprint (2011)
  • J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) Available at \setbox0\makeatletter\@url http://search.proquest.com/docview/305332635 {\unhbox0
  • S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213–1236
  • A I Stipsicz, V Vértesi, On invariants for Legendrian knots, Pacific J. Math. 239 (2009) 157–177
  • W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345–347
  • J J Tripp, Contact structures on open $3$–manifolds, J. Symplectic Geom. 4 (2006) 93–116
  • D S Vela-Vick, On the transverse invariant for bindings of open books, J. Differential Geom. 88 (2011) 533–552
  • R Zarev, Bordered Floer homology for sutured manifolds, preprint (2009)
  • R Zarev, Joining and gluing sutured Floer homology, preprint (2010)
  • R Zarev, Equivalence of gluing maps for $\mathrm{sfh}$, in preparation