Open Access
2016 Concordance maps in knot Floer homology
András Juhász, Marco Marengon
Geom. Topol. 20(6): 3623-3673 (2016). DOI: 10.2140/gt.2016.20.3623

Abstract

We show that a decorated knot concordance C from K to K induces a homomorphism FC on knot Floer homology that preserves the Alexander and Maslov gradings. Furthermore, it induces a morphism of the spectral sequences to HF̂(S3)2 that agrees with FC on the E1 page and is the identity on the E page. It follows that FC is nonvanishing on HFK̂0(K,τ(K)). We also obtain an invariant of slice disks in homology 4–balls bounding S3.

If C is invertible, then FC is injective, hence

dimHFK̂j(K,i) dimHFK̂j(K,i)

for every i,j . This implies an unpublished result of Ruberman that if there is an invertible concordance from the knot K to K, then g(K) g(K), where g denotes the Seifert genus. Furthermore, if g(K) = g(K) and K is fibred, then so is K.

Citation

Download Citation

András Juhász. Marco Marengon. "Concordance maps in knot Floer homology." Geom. Topol. 20 (6) 3623 - 3673, 2016. https://doi.org/10.2140/gt.2016.20.3623

Information

Received: 18 September 2015; Revised: 25 January 2016; Accepted: 24 February 2016; Published: 2016
First available in Project Euclid: 16 November 2017

zbMATH: 1364.57013
MathSciNet: MR3590358
Digital Object Identifier: 10.2140/gt.2016.20.3623

Subjects:
Primary: 57M27 , 57R58

Keywords: concordance , genus , knot Floer homology

Rights: Copyright © 2016 Mathematical Sciences Publishers

Vol.20 • No. 6 • 2016
MSP
Back to Top