Geometry & Topology

Stable pair invariants on Calabi–Yau threefolds containing $\mathbb{P}^2$

Yukinobu Toda

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/gt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We relate Pandharipande–Thomas stable pair invariants on Calabi–Yau 3–folds containing the projective plane with those on the derived equivalent orbifolds via the wall-crossing method. The difference is described by generalized Donaldson–Thomas invariants counting semistable sheaves on the local projective plane, whose generating series form theta-type series for indefinite lattices. Our result also derives non-trivial constraints among stable pair invariants on such Calabi–Yau 3–folds caused by a Seidel–Thomas twist.

Article information

Source
Geom. Topol., Volume 20, Number 1 (2016), 555-611.

Dates
Received: 19 November 2014
Revised: 13 April 2015
Accepted: 5 June 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1510858934

Digital Object Identifier
doi:10.2140/gt.2016.20.555

Mathematical Reviews number (MathSciNet)
MR3470722

Zentralblatt MATH identifier
1360.14136

Subjects
Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]
Secondary: 18E30: Derived categories, triangulated categories

Keywords
stable pair invariants derived categories wall-crossing

Citation

Toda, Yukinobu. Stable pair invariants on Calabi–Yau threefolds containing $\mathbb{P}^2$. Geom. Topol. 20 (2016), no. 1, 555--611. doi:10.2140/gt.2016.20.555. https://projecteuclid.org/euclid.gt/1510858934


Export citation

References

  • A Bayer, E Macr\`\i, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011) 263–322
  • A Bayer, E Macr\`\i, Y Toda, Bridgeland stability conditions on threefolds, I: Bogomolov–Gieseker type inequalities, J. Algebraic Geom. 23 (2014) 117–163
  • A Beauville, Some remarks on Kähler manifolds with $c\sb{1}=0$, from: “Classification of algebraic and analytic manifolds”, (K Ueno, editor), Progr. Math. 39, Birkhäuser, Boston (1983) 1–26
  • K Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601–617
  • K Behrend, Donaldson–Thomas type invariants via microlocal geometry, Ann. of Math. 170 (2009) 1307–1338
  • O Ben-Bassat, C Brav, V Bussi, D Joyce, A `Darboux theorem' for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015) 1287–1359
  • T Bridgeland, Flops and derived categories, Invent. Math. 147 (2002) 613–632
  • T Bridgeland, t-structures on some local Calabi–Yau varieties, J. Algebra 289 (2005) 453–483
  • T Bridgeland, Stability conditions on triangulated categories, Ann. of Math. 166 (2007) 317–345
  • T Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011) 969–998
  • T Bridgeland, A King, M Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535–554
  • K Bringmann, J Manschot, From sheaves on $\mathbb P\sp 2$ to a generalization of the Rademacher expansion, Amer. J. Math. 135 (2013) 1039–1065
  • J Bryan, C Cadman, B Young, The orbifold topological vertex, Adv. Math. 229 (2012) 531–595
  • J Bryan, T Graber, The crepant resolution conjecture, from: “Algebraic geometry–-Seattle 2005, Part 1”, (D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus, editors), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23–42
  • J Bryan, D Steinberg, Curve counting invariants for crepant resolutions, Trans. Amer. Math. Soc. 368 (2016) 1583–1619
  • V Bussi, Generalized Donaldson–Thomas theory over fields $ \mathbb{K} \neq \mathbb{C}$, preprint (2014)
  • J Calabrese, Donaldson–Thomas invariants and flops, preprint (2014)
  • J Calabrese, On the crepant resolution conjecture for Donaldson–Thomas invariants, J. Algebraic Geom. 25 (2016) 1–18
  • T Coates, H Iritani, H-H Tseng, Wall-crossings in toric Gromov–Witten theory, I: Crepant examples, Geom. Topol. 13 (2009) 2675–2744
  • L G öttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193–207
  • L G öttsche, Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces, Comm. Math. Phys. 206 (1999) 105–136
  • D Happel, I Reiten, S O Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575, Amer. Math. Soc. (1996)
  • D Joyce, Configurations in abelian categories, II: Ringel–Hall algebras, Adv. Math. 210 (2007) 635–706
  • D Joyce, Configurations in abelian categories, IV: Invariants and changing stability conditions, Adv. Math. 217 (2008) 125–204
  • D Joyce, Y Song, A theory of generalized Donaldson–Thomas invariants, Mem. Amer. Math. Soc. 1020, Amer. Math. Soc. (2012)
  • G Kapustka, M Kapustka, Primitive contractions of Calabi–Yau threefolds, I, Comm. Algebra 37 (2009) 482–502
  • Y Kawamata, Log crepant birational maps and derived categories, J. Math. Sci. Univ. Tokyo 12 (2005) 211–231
  • A A Klyachko, Moduli of vector bundles and numbers of classes, Funktsional. Anal. i Prilozhen. 25 (1991) 81–83 In Russian; translation in Funct. Anal. Appl. 1 (1991), 67–69
  • J Kollár, S Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press (1998)
  • M Kontsevich, Homological algebra of mirror symmetry, from: “Proceedings of the International Congress of Mathematicians, Volume 1”, (S D Chatterji, editor), Birkhäuser, Basel (1995) 120–139
  • M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008)
  • M Kool, Euler characteristics of moduli spaces of torsion free sheaves on toric surfaces, Geom. Dedicata 176 (2015) 241–269
  • M Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006) 175–206
  • M Lieblich, The openness of tilted hearts (2013) Appendix to D Arcara and A Bertram, “Bridgeland-stable moduli spaces for $K$–trivial surfaces”, J. Eur. Math. Soc. 15 (2013), 1–38
  • J Manschot, The Betti numbers of the moduli space of stable sheaves of rank $3$ on $\mathbb{P}^2$, Lett. Math. Phys. 98 (2011) 65–78
  • J Manschot, Sheaves on $\mathbb{P}^2$ and generalized Appell functions, preprint (2015)
  • D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006) 1263–1285
  • T Milanov, Y Ruan, Y Shen, Gromov–Witten theory and cycle-valued modular forms, preprint (2012)
  • S Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982) 133–176
  • A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47–108
  • R Pandharipande, A Pixton, Gromov–Witten/pairs correspondence for the quintic $3$–fold, preprint (2016)
  • R Pandharipande, R P Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407–447
  • R Pandharipande, R P Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267–297
  • T Pantev, B Toën, M Vaquié, G Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 271–328
  • D Ross, Donaldson–Thomas theory and resolutions of toric transverse $A$–Singularities, preprint (2016)
  • R Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008) 193–256
  • Y Ruan, The cohomology ring of crepant resolutions of orbifolds, from: “Gromov–Witten theory of spin curves and orbifolds”, (T J Jarvis, T Kimura, A Vaintrob, editors), Contemp. Math. 403, Amer. Math. Soc. (2006) 117–126
  • P Seidel, R Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37–108
  • J Stoppa, R P Thomas, Hilbert schemes and stable pairs: GIT and derived category wall crossings, Bull. Soc. Math. France 139 (2011) 297–339
  • R P Thomas, A holomorphic Casson invariant for Calabi–Yau $3$–folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000) 367–438
  • Y Toda, Moduli stacks and invariants of semistable objects on $K3$ surfaces, Adv. Math. 217 (2008) 2736–2781
  • Y Toda, Limit stable objects on Calabi–Yau $3$–folds, Duke Math. J. 149 (2009) 157–208
  • Y Toda, Curve counting theories via stable objects, I: DT/PT correspondence, J. Amer. Math. Soc. 23 (2010) 1119–1157
  • Y Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, from: “New developments in algebraic geometry, integrable systems and mirror symmetry”, (M-H Saito, S Hosono, K Yoshioka, editors), Adv. Stud. Pure Math. 59, Math. Soc. Japan, Tokyo (2010) 389–434
  • Y Toda, Stable pairs on local $K3$ surfaces, J. Differential Geom. 92 (2012) 285–371
  • Y Toda, Curve counting theories via stable objects, II: DT/ncDT flop formula, J. Reine Angew. Math. 675 (2013) 1–51
  • Y Toda, Generalized Donaldson–Thomas invariants on the local projective plane, preprint (2014)
  • Y Toda, Gepner type stability conditions on graded matrix factorizations, Algebr. Geom. 1 (2014) 613–665
  • C Vafa, E Witten, A strong coupling test of $S$–duality, Nuclear Phys. B 431 (1994) 3–77
  • K Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank $2$ on $\mathbold{P}\sp 2$, J. Reine Angew. Math. 453 (1994) 193–220
  • K Yoshioka, Chamber structure of polarizations and the moduli of stable sheaves on a ruled surface, Internat. J. Math. 7 (1996) 411–431