Functiones et Approximatio Commentarii Mathematici

A note on the extended Bruinier-Kohnen conjecture

Mohammed Amin Amri and M'hammed Ziane

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $f$ be a cusp form of half-integral weight $k+1/2$, whose Fourier coefficients $a(n)$ are not necessarily real. We prove an extension of the Bruinier-Kohnen conjecture on the equidistribution of the signs of $a(n)$ for the families $\{a(tp^{2\nu})\}_{p,\text{prime}}$, where $\nu$ and $t$ be fixed odd positive integer and square-free integer respectively.

Article information

Funct. Approx. Comment. Math., Volume 61, Number 2 (2019), 139-146.

First available in Project Euclid: 26 October 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F03: Modular and automorphic functions 11F30: Fourier coefficients of automorphic forms 11F37: Forms of half-integer weight; nonholomorphic modular forms

sign changes Fourier coefficients of cusp forms Sato-Tate equidistribution


Amri, Mohammed Amin; Ziane, M'hammed. A note on the extended Bruinier-Kohnen conjecture. Funct. Approx. Comment. Math. 61 (2019), no. 2, 139--146. doi:10.7169/facm/1723.

Export citation


  • [1] M.A. Amri, Oscillatory behavior and equidistribution of signs of Fourier coefficients of cusp forms, Ramanujan J. (2019),
  • [2] M.A. Amri, Simultaneous sign change and equidistribution of signs of Fourier coefficients of two cusp forms, Arch. Math. 111(2) (2018), 257–266.
  • [3] M.A. Amri, Angular changes of complex Fourier coefficients of cusp forms, J. Ramanujan Math. Soc. 34 (2019), No. 3, 365–371.
  • [4] S. Arias-de-Reyna, I. Inam, G. Wiese, On conjectures of Sato-Tate and Bruinier-Kohnen, Ramanujan J. 36(3) (2015), 455–481.
  • [5] T. Barnet-Lamb, D. Geraghty, M. Harris, R. Taylor, A Family of Calabi-Yau Varities and Potential Automorphy II, Pub. Res. Inst. Math. Sci. 47 (2011), 29–98.
  • [6] J.-H. Bruinier, W. Kohnen, Sign changes of coefficients of half integral weight modular forms, in: Edixhoven, B. (ed.) Modular forms on Schiermonnikoong, (2008), pp. 57–66, Cambridge University Press, Cambridge.
  • [7] S. Das, W. Kohnen, On sign changes of eigenvalues of Siegel cusp forms of genus 2 in prime powers, Acta Arith. 183(2) (2018), 167–172.
  • [8] I. Inam, G. Wiese, Equidistribution of signs for modular eigenforms of half integral weight, Arch. Math. 101 (2013), 331–339.
  • [9] I. Inam, G. Wiese, A short note on the Bruiner-Kohnen sign equidistribution conjecture and Halàsz’ theorem, Int. J. Number Theory 12(2) (2016), 357–360.
  • [10] M. Knopp, W. Kohnen, W. Pribitkin, On the signs of Fourier coefficients of cusp forms, Ramanujan J. 7(1) (2003), 269–277.
  • [11] W. Kohnen, Y.-K. Lau, J. Wu, Fourier coefficients of cusp forms of half-integral weight, Math. Z. 273 (2013), 29–41.
  • [12] J. Meher, N. Tanabe, Sign changes of Fourier coefficients of Hilbert modular forms, J. Number Theory 145 (2014), 230-244.
  • [13] J. Meher, R. Murty, Oscillations of coefficients of Dirichlet series attached to automorphic forms, Proc. Amer. Math. Soc. 145(2) (2017), 563–575.
  • [14] S. Niwa, Modular forms of half integral weight and the integral of certain theta-functions, Nagoya Math. J. 56 (1975), 147–161.
  • [15] W. Pribitkin, On the oscillatory behavior of certain arithmetic functions associated with automorphic forms, J. Number Theory 131(11) (2011), 2047–2060.
  • [16] K.A. Ribet, Twists of modular forms and endomorphisms of Abelian varieties, Math. Ann. 253 (1980), 43–62.
  • [17] G. Shimura, On Modular forms of half-integral weight, Ann. of Math. 97 (1973), 440–481.