Functiones et Approximatio Commentarii Mathematici

On $C_p^*$-seminorms for generalized involution

A. El Kinani

Full-text: Open access

Abstract

We consider algebras endowed with a generalized involution. We show that $\vert \cdot \vert ^{\frac{1}{p}}_{p}$ is a $C^*$-seminorm, for every a $p$-seminorm $\vert \cdot \vert_p$, $0 \lt p \leqslant 1$, which satisfies the $C^*$-property.

Article information

Source
Funct. Approx. Comment. Math., Volume 30 (2002), 83-88.

Dates
First available in Project Euclid: 29 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.facm/1538186662

Digital Object Identifier
doi:10.7169/facm/1538186662

Mathematical Reviews number (MathSciNet)
MR2136512

Zentralblatt MATH identifier
1080.46520

Subjects
Primary: 46K05: General theory of topological algebras with involution
Secondary: 46L05: General theory of $C^*$-algebras

Keywords
generalized involution, involutive antimorphism $C^*$-seminorm submultiplicativity

Citation

El Kinani, A. On $C_p^*$-seminorms for generalized involution. Funct. Approx. Comment. Math. 30 (2002), 83--88. doi:10.7169/facm/1538186662. https://projecteuclid.org/euclid.facm/1538186662


Export citation