Functiones et Approximatio Commentarii Mathematici

Compact embeddings between Besov spaces defined on $h$-sets

Michele Bricchi

Full-text: Open access

Abstract

We study the compactness of the embedding between Besov spaces defined on some type of isotropic fractal sets in the Euclidean space. The “degree of compactness” of such an embedding is expressed in terms of its entropy numbers.

Article information

Source
Funct. Approx. Comment. Math., Volume 30 (2002), 7-36.

Dates
First available in Project Euclid: 29 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.facm/1538186659

Digital Object Identifier
doi:10.7169/facm/1538186659

Mathematical Reviews number (MathSciNet)
MR2136509

Zentralblatt MATH identifier
1076.46024

Subjects
Primary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems
Secondary: 28A80: Fractals [See also 37Fxx] 47B06: Riesz operators; eigenvalue distributions; approximation numbers, s- numbers, Kolmogorov numbers, entropy numbers, etc. of operators

Keywords
generalised Besov spaces entropy numbers ractal sets

Citation

Bricchi, Michele. Compact embeddings between Besov spaces defined on $h$-sets. Funct. Approx. Comment. Math. 30 (2002), 7--36. doi:10.7169/facm/1538186659. https://projecteuclid.org/euclid.facm/1538186659


Export citation