Functiones et Approximatio Commentarii Mathematici

On the sum of a prime and a $k$-free number

Alessandro Languasco

Full-text: Open access

Abstract

We prove a refined asymptotic formula for the number of representations of sufficiently large integer as a sum of a prime and a $k$-free number, $k \geqslant 2$.

Article information

Source
Funct. Approx. Comment. Math., Volume 34 (2005), 19-26.

Dates
First available in Project Euclid: 29 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.facm/1538186584

Digital Object Identifier
doi:10.7169/facm/1538186584

Mathematical Reviews number (MathSciNet)
MR2269661

Zentralblatt MATH identifier
1228.11156

Subjects
Primary: 11P55: Applications of the Hardy-Littlewood method [See also 11D85]
Secondary: 11P32: Goldbach-type theorems; other additive questions involving primes

Keywords
prime numbers $k$-free numbers

Citation

Languasco, Alessandro. On the sum of a prime and a $k$-free number. Funct. Approx. Comment. Math. 34 (2005), 19--26. doi:10.7169/facm/1538186584. https://projecteuclid.org/euclid.facm/1538186584


Export citation