Functiones et Approximatio Commentarii Mathematici

Explicit expression of a Barban & Vehov Theorem

Mohamed Haye Betah

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove that $$ S=\sum_{n \leq N} {(\sum\limits_{d|n}\lambda_d^{(1)})^2}/{n}\leq 166 \frac{\log N}{\log z} $$ where $N \geq z \geq 100$, where the $\lambda_d^{(1)} $ is the weight introduced by Barban & Vehov in 1968, namely $$ \lambda_d^{(1)}= \begin{cases} \mu(d) & \text{when $d \leq z$} ,\\ \mu(d)\frac{\log({z^2}/{d})}{\log z} & \text{when $z< d \leq z^2$}, \\ 0 & \text{when $z^2<d$,} \end{cases} $$ where $\mu$ is the Möbius function.

Article information

Source
Funct. Approx. Comment. Math., Volume 60, Number 2 (2019), 177-193.

Dates
First available in Project Euclid: 26 June 2018

Permanent link to this document
https://projecteuclid.org/euclid.facm/1529978432

Digital Object Identifier
doi:10.7169/facm/1712

Mathematical Reviews number (MathSciNet)
MR3964259

Zentralblatt MATH identifier
07068530

Subjects
Primary: 11N37: Asymptotic results on arithmetic functions 11Y35: Analytic computations
Secondary: 11A25: Arithmetic functions; related numbers; inversion formulas

Keywords
explicit estimates Möbius function

Citation

Betah, Mohamed Haye. Explicit expression of a Barban &amp; Vehov Theorem. Funct. Approx. Comment. Math. 60 (2019), no. 2, 177--193. doi:10.7169/facm/1712. https://projecteuclid.org/euclid.facm/1529978432


Export citation

References

  • [1] M.B. Barban and P.P. Vehov, An extremal problem, Trudy Moskov. Mat. 18 (1968), 83–90.
  • [2] S.W. Graham, An asymptotic estimate related to Selberg's sieve, J. Number Theory 10 (1978), 83–94.
  • [3] Y. Motohashi, Primes in arithmetic progressions, Invent. Math. 44(2) (1978), 163–178.
  • [4] Y. Motohashi, Sieve Methods and Prime Number Theory, Tata Lectures Notes, page 205, 1983.
  • [5] Y. Motohashi, On some improvements of the Brun-Titchmarsh theorem, J. Math. Soc. Japan 26 (1974), 306–323.
  • [6] P. Akhilesh and O. Ramaré, Explicit averages of non-negative multiplicative functions: going beyond the main term, to appear in Colloquium Mathematicum, page 30 pp., 2016.
  • [7] The PARI Group, Bordeaux, PARI/GP, version 2.7.0, 2014, http://pari.math.u-bordeaux.fr/.
  • [8] O. Ramaré, Some elementary explicit bounds for two mollifications of the Moebius function, Functiones et Approximatio 49(2) (2013), 229–240.
  • [9] O. Ramaré, An explicit density estimate for Dirichlet $L$-series, Math. Comp. 85(297) (2016), 335–356.
  • [10] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.