Functiones et Approximatio Commentarii Mathematici

Symmetric q-Bernoulli numbers and polynomials

Hédi Elmonser

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this work we are interested by giving a new $q$-analogue of Bernoulli numbers and polynomials which are symmetric under the interchange $q\leftrightarrow q^{-1}$ and deduce some important relations of them. Also, we deduce a $q$-analogue of the Euler-Maclaurin formulas.

Article information

Source
Funct. Approx. Comment. Math., Volume 56, Number 2 (2017), 181-193.

Dates
First available in Project Euclid: 27 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.facm/1485486025

Digital Object Identifier
doi:10.7169/facm/1603

Mathematical Reviews number (MathSciNet)
MR3660958

Zentralblatt MATH identifier
06864153

Subjects
Primary: 33D05: $q$-gamma functions, $q$-beta functions and integrals

Keywords
q-Bernoulli symmetric

Citation

Elmonser, Hédi. Symmetric q-Bernoulli numbers and polynomials. Funct. Approx. Comment. Math. 56 (2017), no. 2, 181--193. doi:10.7169/facm/1603. https://projecteuclid.org/euclid.facm/1485486025


Export citation

References

  • G.E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press. Cambridge (1999).
  • K. Brahim and Y. Sidomou, On Some Symmetric q-Special Functions, Le Mathematiche LXVIII (2013)-Fasc.II, 107–122.
  • L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987–100.
  • G. Dattoli and A. Torre, Symmetric q-Bessel functions, Le Mathematiche 51 (1996), no. 1, 153–167.
  • G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge.
  • A.S. Hegazi and M. Mansour, A Note on q-Bernoulli numbers and polynomials, Journal of Nonlinear Mathematical Physics 13 (2006), no. 1, 9–18.
  • F.H. Jackson, On a $q$-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics 41 (1910), 193–203.
  • V.G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
  • T. Kim, Non Archimeden q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91–98.
  • T. Kim and S.H. Rim, Generalized Carlitz's q-Bernoulli Numbers in the p-adic number field, Adv. Stud. Contemp Math. 2 (2000), 9–19.
  • T. Kim, L.C. Jang, S.H. Rim, and H.K. Pak, On the twisted q-Zeta functions and q-Bernoulli polynomials, Far East J. Applied Math. 13 (2003), 13–21.
  • H.T. Koelink and T.H. Koornwinder, $q$-Special Functions, a Tutorial, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemp. Math. 134, Editors: M. Gerstenhaber and J. Stasheff, J. Amer. Math. Soc., Providence, (1992), 141–142.
  • R. Koelink and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 94-05, Technical University Delft (1994).
  • T.H. Koornwinder, Special functions and q-commuting variables, Fields Institue Communications 14 (1997), 131–166.
  • B.A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412–422.
  • D.S. McAnally, q-exponential and q-gamma functions I.q-exponential functions, J. Math. Phys. 36 (1995), no. 1, 546–573.
  • D.S. McAnally, q-exponential and q-gamma functions II.q-gamma functions, J. Math. Phys. 36 (1995), no. 1, 574–595.
  • E.D. Rainville, Special functions, The Macmillan company, (1965).