Functiones et Approximatio Commentarii Mathematici

Algebraic independence results for values of theta-constants

Carsten Elsner

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $\theta(q)=1+2\sum_{\nu=1}^{\infty} q^{\nu^2}$ denote the Thetanullwert of the Jacobi Zeta function \[\theta(z|\tau) =\sum_{\nu=-\infty}^{\infty} e^{\pi i\nu^2\tau + 2\pi i\nu z}.\] For algebraic numbers $q$ with $0<|q|<1$ we prove the algebraic independence over $\mathbb{Q}$ of the numbers $\theta(q^n)$ and $\theta(q)$ for $n=2,3,\dots,12$ and furthermore for all $n\geq 16$ which are powers of two. An application for $n=5$ proves the transcendence of the number \[\sum_{j=1}^{\infty} {(-1)}^j \Big( \frac{j}{5}\Big) \frac{jq^j}{1-q^j}.\] Similar results are obtained for numbers related to modular equations of degree 3, 5, and 7.

Article information

Funct. Approx. Comment. Math., Volume 52, Number 1 (2015), 7-27.

First available in Project Euclid: 20 March 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11J85: Algebraic independence; Gelʹfond's method
Secondary: 11J91: Transcendence theory of other special functions 11F27: Theta series; Weil representation; theta correspondences

algebraic independence theta-constants Nesterenko's theorem independence criterion modular equations


Elsner, Carsten. Algebraic independence results for values of theta-constants. Funct. Approx. Comment. Math. 52 (2015), no. 1, 7--27. doi:10.7169/facm/2015.52.1.1.

Export citation


  • B.C. Berndt, Ramanujan's Notebooks, part III, Springer (1991).
  • C. Elsner, Sh. Shimomura, I. Shiokawa, Algebraic independence results for reciprocal sums of Fibonacci numbers, Acta Arithmetica 148.3 (2011), 205–223.
  • C. Elsner, I. Shiokawa, On algebraic relations for Ramanujan's functions, Ramanujan Journal 29 (2012), 273–294, DOI: 10.1007/s11139-012-9384-8.
  • A. Hurwitz, R. Courant, Funktionentheorie, 4.Auflage, Springer (1964).
  • S. Lang, Elliptic Functions, Springer Verlag (1987).
  • D.F. Lawden, Elliptic Functions and Applications, Springer (1989).
  • Yu.V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), 65–96; English transl. Sb. Math. 187, 1319–1348.
  • Yu.V. Nesterenko, On some identities for theta-constants, Seminar on Mathematical Sciences: Diophantine Analysis and Related Fields, edt. by M. Katsurada, T. Komatsu, and H. Nakada, Keio University, Yokohama, no. 35 (2006), 151–160.
  • H. Rademacher, Topics in Analytic Number Theory, Die Grundlehren der mathematischen Wissenschaften, Bd.169, Springer, Berlin–Heidelberg–New York (1973).