Functiones et Approximatio Commentarii Mathematici

Discrepancy estimates for index-transformed uniformly distributed sequences

Peter Kritzer, Gerhard Larcher, and Friedrich Pillichshammer

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we show discrepancy bounds for index-transformed uniformly distributed sequences. From a general result we deduce very tight lower and upper bounds on the discrepancy of index-transformed van der Corput-, Halton-, and $(t,s)$-sequences indexed by the sum-of-digits function. We also analyze the discrepancy of sequences indexed by other functions, such as, e.g., $\lfloor n^{\alpha}\rfloor$ with $0 < \alpha < 1$.

Article information

Funct. Approx. Comment. Math., Volume 51, Number 1 (2014), 197-220.

First available in Project Euclid: 24 September 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11K06: General theory of distribution modulo 1 [See also 11J71]
Secondary: 11K31: Special sequences 11K36: Well-distributed sequences and other variations 11K38: Irregularities of distribution, discrepancy [See also 11Nxx]

discrepancy uniform distribution van der Corput-sequence Halton-sequence $(t,s)$-sequence sum-of-digits function


Kritzer, Peter; Larcher, Gerhard; Pillichshammer, Friedrich. Discrepancy estimates for index-transformed uniformly distributed sequences. Funct. Approx. Comment. Math. 51 (2014), no. 1, 197--220. doi:10.7169/facm/2014.51.1.12.

Export citation


  • E.I. Atanassov, On the discrepancy of the Halton sequences, Math. Balkanica (N.S.) 18 (2004), 15–32.
  • R. Béjian, Minoration de la discrépance d'une suite quelconque sur $T$, Acta Arith. 41 (1982), 185–202.
  • R. Béjian and H. Faure, Discrépance de la suite de van der Corput, C. R. Acad. Sci., Paris, Sér. A 285 (1977), 313–316.
  • D. Bilyk, M.T. Lacey and A. Vagharshakyan, On the small ball inequality in all dimensions, J. Funct. Anal. 254 (2008), 2470–2502.
  • C. Coquet, Sur certaines suites uniformément équiréparties modulo 1, Acta Arith. 36 (1980), 157–162.
  • J. Dick and F. Pillichshammer, Digital Nets and Sequences–-Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.
  • M. Drmota, $q$-additive functions and well distribution modulo 1, Demonstratio Math. 30 (1998), 883–896.
  • M. Drmota and G. Larcher, The sum-of-digits-function and uniform distribution modulo 1, J. Number Theory 89 (2001), 65–96.
  • M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997.
  • H. Faure, Suites à faible discrépance dans $T^s$, Publ. Dép. Math., Université de Limoges, Limoges, France, 1980.
  • H. Faure and C. Lemieux, Improved Halton sequences and discrepancy bounds, Monte Carlo Models and Applications 16 (2010), 231–250.
  • A.O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265.
  • J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84–90. Erratum, ibid. 2: p. 196, 1960.
  • P. Hellekalek, A general discrepancy estimate based on $p$-adic arithmetics, Acta Arith. 139 (2009), 117–129.
  • P. Hellekalek, A notion of diaphony based on $p$-adic arithmetic, Acta Arith. 145 (2010), 273–284.
  • P. Hellekalek, Assessing randomness: tools from $b$-adic analysis, talk at the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Sydney, Feb. 14 2012.
  • P. Hellekalek and H. Niederreiter, Constructions of uniformly distributed sequences using the $b$-adic method, Unif. Distrib. Theory 6 (2011), 185–200.
  • R. Hofer, P. Kritzer, G. Larcher and F. Pillichshammer, Distribution properties of generalized van der Corput-Halton sequences and their subsequences, Int. J. Number Theory 5 (2009), 719–746.
  • L.K. Hua and Y. Wang, Applications of number theory to numerical analysis, Springer-Verlag, Berlin-New York, 1981.
  • L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley, New York, 1974; reprint, Dover Publications, Mineola, NY, 2006.
  • J. Matoušek, Geometric discrepancy. An illustrated guide, Algorithms and Combinatorics 18, Springer-Verlag, Berlin, 1999.
  • H.G. Meijer, The discrepancy of a $g$-adic sequence, Indag. Math. 30 (1968), 54–66.
  • H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273–337.
  • H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
  • A.M. Odlyzko and L.B. Richmond, On the unimodality of high convolutions of discrete distributions, Ann. Probab. 13 (1985), 299–306.
  • F. Pillichshammer, On the discrepancy of the van der Corput sequence indexed by Fibonacci numbers, Fibonacci Quart. 50 (2012), 235–238.
  • J.Ch. Puchta and J. Spilker, Altes und Neues zur Quersumme, Math. Semesterber. 49 (2002), 209–226.
  • K.F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73–79.
  • W.M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972), 45–50.
  • R.F. Tichy and G. Turnwald, Gleichmässige Diskrepanzabschätzung für Ziffernsummen, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 123 (1987), 17–21.
  • R.F. Tichy and G. Turnwald, On the discrepancy of some special sequences, J. Number Theory 26 (1987), 351–366.