Functiones et Approximatio Commentarii Mathematici

A study on multiple zeta values from the viewpoint of zeta-functions of root systems

Yasushi Komori, Kohji Matsumoto, and Hirofumi Tsumura

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study multiple zeta values (MZVs) from the viewpoint of zeta-functions associated with the root systems which we have studied in our previous papers. In fact, the $r$-ple zeta-function of Euler-Zagier type can be regarded as the zeta-function associated with a certain sub-root system of type $C_r$. Hence, by the action of the Weyl group, we can find new aspects of MZVs which imply that the well-known formula for MZVs given by Hoffman and Zagier coincides with Witten's volume formula associated with the above sub-root system of type $C_r$. Also, from this observation, we can prove some new formulas which especially include the parity results of double and triple zeta values. As another important application, we give certain refinement of restricted sum formulas, which gives restricted sum formulas among MZVs of an arbitrary depth $r$ which were previously known only in the cases of depth $2,3,4$. Furthermore, considering a~sub-root system of type $B_r$ analogously, we can give relevant analogues of the Hoffman-Zagier formula, parity results and restricted sum formulas.

Article information

Source
Funct. Approx. Comment. Math., Volume 51, Number 1 (2014), 43-46.

Dates
First available in Project Euclid: 24 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.facm/1411564615

Digital Object Identifier
doi:10.7169/facm/2014.51.1.3

Mathematical Reviews number (MathSciNet)
MR3263069

Zentralblatt MATH identifier
1357.11080

Subjects
Primary: 11M32: Multiple Dirichlet series and zeta functions and multizeta values
Secondary: 11M06: $\zeta (s)$ and $L(s, \chi)$

Keywords
multiple zeta values Witten zeta-functions root systems Riemann's zeta-function

Citation

Komori, Yasushi; Matsumoto, Kohji; Tsumura, Hirofumi. A study on multiple zeta values from the viewpoint of zeta-functions of root systems. Funct. Approx. Comment. Math. 51 (2014), no. 1, 43--46. doi:10.7169/facm/2014.51.1.3. https://projecteuclid.org/euclid.facm/1411564615


Export citation

References

  • T. Arakawa and M. Kaneko, Notes on Multiple Zeta Values and Multiple $L$ Values, Lecture Note, Rikkyo Univ., 2005 (in Japanese).
  • T. Arakawa and M. Kaneko, Introduction to Multiple Zeta Values, MI Lecture Note Vol. 23, Kyushu Univ., 2010, http://www2.math.kyushu-u.ac.jp/~mkaneko (in Japanese).
  • D. Borwein, J.M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. 38 (1995), 277–294.
  • J.M. Borwein and R. Girgensohn, Evaluation of triple Euler sums, Electron. J. Combin. 3 (1996), Research Paper 23, approx. 27 pp.
  • D.J. Broadhurst, J.M. Borwein and D.M. Bradley, Evaluation of $k$-fold Euler/Zagier sums: a compendium of results for arbitrary $k$, Electron. J. Combin. 4(2) (1997), Research Paper 5, approx. 21 pp.
  • N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
  • H. Gangl, M. Kaneko and D. Zagier, Double zeta values and modular forms, in Automorphic Forms and Zeta Functions, World Sci. Publ., Hackensack, NJ, 2006, 71–106.
  • M.E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.
  • J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972.
  • J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
  • K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math. 142 (2006), 307–338.
  • M. Kaneko, Multiple zeta values, Sugaku Expositions 18 (2005), 221–232 (translation of Sugaku 54 (2002), 404–415).
  • M. Kaneko and K. Tasaka, Double zeta values, double Eisenstein series, and modular forms of level $2$, Math. Ann. 357 (2013), 1091–1118.
  • Y. Komori, K. Matsumoto and H. Tsumura, Zeta-functions of root systems, in The Conference on $L$-functions, L. Weng and M. Kaneko (eds.), World Sci. Publ., 2007, 115–140.
  • Y. Komori, K. Matsumoto and H. Tsumura, Zeta and $L$-functions and Bernoulli polynomials of root systems, Proc. Japan Acad., Ser. A 84 (2008), 57–62.
  • Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras II, J. Math. Soc. Japan 62 (2010), 355–394.
  • Y. Komori, K. Matsumoto and H. Tsumura, On multiple Bernoulli polynomials and multiple $L$-functions of root systems, Proc. London Math. Soc. 100 (2010), 303–347.
  • Y. Komori, K. Matsumoto and H. Tsumura, An introduction to the theory of zeta-functions of root systems, in Algebraic and Analytic Aspects of Zeta Functions and $L$-functions, G. Bhowmik, K. Matsumoto and H. Tsumura (eds.), MSJ Memoirs, Vol. 21, Mathematical Society of Japan, 2010, 115–140.
  • Y. Komori, K. Matsumoto and H. Tsumura, Functional relations for zeta-functions of root systems, in Number Theory: Dreaming in Dreams – Proceedings of the 5th China-Japan Seminar, T. Aoki, S. Kanemitsu and J.-Y. Liu (eds.), World Sci. Publ., 2010, 135–183.
  • Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras III, in Multiple Dirichlet Series, L-functions and Automorphic Forms, D. Bump, S. Friedberg and D. Goldfeld (eds.), Progr. Math. Vol. 300, Birkhäuser, 2012, 223–286.
  • Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras IV, Glasgow Math. J. 53 (2011), 185–206.
  • Y. Komori, K. Matsumoto and H. Tsumura, Shuffle products for multiple zeta values and partial fraction decompositions of zeta-functions of root systems, Math. Z. 268 (2011), 993–1011.
  • Y. Komori, K. Matsumoto and H. Tsumura, Multiple zeta values and zeta-functions of root systems, Proc. Japan Acad., Ser. A 87 (2011), 103–107.
  • Y. Komori, K. Matsumoto and H. Tsumura, Functional relations for zeta-functions of weight lattices of Lie groups of type $A_3$, in Analytic and Probabilistic Methods in Number Theory, E. Manstavičius et al. (eds.), TEV, 2012, 151-172.
  • Y. Komori, K. Matsumoto and H. Tsumura, Zeta-functions of weight lattices of compact connected semisimple Lie groups, preprint, arXiv:1011.0323.
  • T. Machide, Extended double shuffle relations and the generating function of triple zeta values of any fixed weight, Kyushu J. Math. 67 (2013), 281–307.
  • K. Matsumoto, Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series, Nagoya Math. J. 172 (2003), 59–102.
  • K. Matsumoto, The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I, J. Number Theory 101 (2003), 223–243.
  • K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras I, Ann. Inst. Fourier (Grenoble) 56 (2006), 1457–1504.
  • K. Matsumoto, T. Nakamura, H. Ochiai and H. Tsumura, On value-relations, functional relations and singularities of Mordell-Tornheim and related triple zeta-functions, Acta Arith. 132 (2008), 99–125.
  • H. N. Minh and M. Petitot, Lyndon words, polylogarithms, and the Riemann $\zeta$ function, Discrete Math. 217 (2000), 273–292.
  • S. Muneta, On some explicit evaluations of multiple zeta-star values, J. Number Theory 128 (2008), 2538–2548.
  • S. Muneta, Refined sum formula of multiple zeta value, in Proc. 3rd Fukuoka Number Theory Conference (Fukuoka, 2008), M. Kaneko, Y. Gon and Y. Kishi (eds.), 2009, 49–63 (in Japanese).
  • T. Nakamura, Restricted and weighted sum formulas for double zeta values of even weight, Šiauliai Math. Semin. 4,(12) (2009), 151–155.
  • Z. Shen and T. Cai, Some identities for multiple zeta values, J. Number Theory 132 (2012), 314–323.
  • H. Tsumura, Combinatorial relations for Euler-Zagier sums, Acta Arith. 111 (2004), 27–42.
  • H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142 (2007), 395–405.
  • E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991), 153–209.
  • Y. Yamasaki, Evaluations of multiple Dirichlet $L$-values via symmetric functions, J. Number Theory 129 (2009), 2369–2386.
  • D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics, Vol. II, A. Joseph et al. (eds.), Progr. Math. Vol. 120, Birkhäuser, 1994, pp. 497–512.