Functiones et Approximatio Commentarii Mathematici

Poly-Euler polynomials and Arakawa--Kaneko type zeta functions

Yoshinori Hamahata

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We introduce poly-Euler polynomials, which generalize Euler polynomials. Various results about them are provided. Furthermore, we introduce zeta functions of Arakawa--Kaneko type, and discuss their properties and the relation with poly-Euler polynomials.

Article information

Source
Funct. Approx. Comment. Math., Volume 51, Number 1 (2014), 7-22.

Dates
First available in Project Euclid: 24 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.facm/1411564613

Digital Object Identifier
doi:10.7169/facm/2014.51.1.1

Mathematical Reviews number (MathSciNet)
MR3263067

Zentralblatt MATH identifier
1304.30004

Subjects
Primary: 11B68: Bernoulli and Euler numbers and polynomials
Secondary: 11M32: Multiple Dirichlet series and zeta functions and multizeta values 11M35: Hurwitz and Lerch zeta functions

Keywords
polylogarithms Euler numbers and polynomials Bernoulli numbers and polynomials zeta function

Citation

Hamahata, Yoshinori. Poly-Euler polynomials and Arakawa--Kaneko type zeta functions. Funct. Approx. Comment. Math. 51 (2014), no. 1, 7--22. doi:10.7169/facm/2014.51.1.1. https://projecteuclid.org/euclid.facm/1411564613


Export citation

References

  • T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 1–21.
  • T. Arakawa and M. Kaneko, On poly-Bernoulli numbers, Comment. Math. Univ. St. Pauli 48 (1999), 159–167.
  • A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math. 65 (2011), 15–24.
  • A. Bayad and Y. Hamahata, Arakawa–Kaneko $L$-functions and generalized poly-Bernoulli polynomials, J. Number Theory 131 (2011), 1020–1036.
  • A. Bayad and Y. Hamahata, Multiple polylogarithms and multi-poly-Bernoulli polynomials, Funct. Approx. Comment. Math. 46 (2012), 45–61.
  • K.-W. Chen, Sums of products of generalized Bernoulli polynomials, Pacific J. Math. 208 (2003), 39–52.
  • M.-A. Coppo and B. Candelpergher, The Arakawa–Kaneko zeta function, Ramanujan J. 22 (2010), 153–162.
  • K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60 (1996), 23–41.
  • R. L. Graham, D. L. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, MA,1994.
  • Y. Hamahata and H. Masubuchi, Recurrence formulae for multi-poly-Bernoulli numbers, Integers 7 (2007), A46.
  • Y. Hamahata and H. Masubuchi, Special multi-poly-Bernoulli numbers, J. Integer Sequences 10 (2007), article 07.4.1.
  • M. Kaneko, Poly-Bernoulli numbers, J. Théorie de Nombres Bordeaux 9 (1997), 221–228.
  • A. Laurinčikas and R. Garunkštis, The Lerch Zeta-function, Kluwer Academic Publishers, 2010.
  • S. Roman, The Umbral Calculus, Academic Press, 1984.
  • J.-W. Son and M.-S. Kim, On poly-Eulerian numbers, Bull. Korean Math. Soc. 36 (1999), 47–61.
  • D. Zagier, Zetafunktionen und quadratische Körper, Springer.