Functiones et Approximatio Commentarii Mathematici

On the work of Lech Drewnowski

Paweł Domański and Witold Wnuk

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Funct. Approx. Comment. Math., Volume 50, Number 1 (2014), 7-53.

Dates
First available in Project Euclid: 27 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.facm/1395924285

Digital Object Identifier
doi:10.7169/facm/2014.50.1.1

Mathematical Reviews number (MathSciNet)
MR3189501

Zentralblatt MATH identifier
1296.26008

Citation

Domański, Paweł; Wnuk, Witold. On the work of Lech Drewnowski. Funct. Approx. Comment. Math. 50 (2014), no. 1, 7--53. doi:10.7169/facm/2014.50.1.1. https://projecteuclid.org/euclid.facm/1395924285


Export citation

References

  • A. Aizpuru, A. Gutiérrez-Dávila, Sequences of measures on atomic subalgebras of $\mathcal{P}(\wstepbN)$, Quaestiones Mathematicae 30 (2007), 381–389.
  • C. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs vol. 105, American Mathematical Society, 2003.
  • R. Anantharaman, The sequence of Rademacher averages of mesurable sets, Comment. Math. Prace Mat. 30 (1990), 5–8.
  • R. Anantharaman, K.M. Garg, The properties of a residual set of vector mesures, Lecture Notes in Math. 1033 Springer-Verlag, Berlin, Heidelberg and New York, 1983, 12-35.
  • S.I. Ansari, On Banach spaces $Y$ for which $B(C(\Omega),Y)=K(C(\Omega), Y)$, Pacific J. Math. 169 (1995), 201–218.
  • R.G. Bartle, N. Dunfrod, J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289–305.
  • J. Batt, Strongly additive transformations and integral representations with measures of non-linear operators, Bull. Amer. Soc. Math. 78 (1972), 474–478.
  • Y. Benyamini, S. Lassalle, J.G. Llavona, Homogeneous orthogonally additive polynomials on Banach lattices, Bull. London Math. Soc. 38 (2006), 459–469.
  • J. Bonet, J.C. Dí az, The density condition in subspaces and quotients of Fréchet spaces, Monatsh. Math. 117 (1994), 199–212.
  • J. Bonet, P. Domański, M. Lindtröm, Cotype and complemented copies of $c_0$ in spaces of operators, Czechoslovak Math. J. 46 (1996), 271–289.
  • J. Bonet, P. Domański, M. Lindström, M. S. Ramanujan, Operator spaces containing $c_0$ or $\ell_\infty$, Results Math. 28 (1995), 250–269.
  • J. Bonet, M. Lindström, M. Valdivia, Two theorems of Josefson-Nissenzweig type for Fréchet spaces, Proc. Amer. Math. Soc. 117 (1993), 363–364.
  • J. Boos, T. Leiger, On some `duality' of the Nikodým property and the Hahn property, J. Math. Appl. Anal. 341 (2008), 235–246.
  • J. Boos, T. Leiger, `Duality' of the Nikodým property and the Hahn property: Densities defined by sequences of matrices, J. Math. Anal. Appl. 380 (2011), 224–231.
  • P. Borodulin-Nadzieja, G. Plebanek, On sequential properties of Banach spaces, spaces of measures and densities, Czechoslovak Math. J. 60 (2010), 381–399.
  • J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58.
  • J. Brzdęk, J. Sikorska, A conditional exponential functional equation and its stability, Nonlinear Anal. 72 (2010), 2923–2934.
  • G. Buttazzo, G. Dalmaso, A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand, J. Math. Pure Appl. 64 (1985), 337–361.
  • M. Capon, Primariness of certain Banach spaces, Proc. London Math. Soc. 45 (1982), 113–130.
  • P. Cembranos, $C(K,E)$ contains a complemented copy of $c_0$, Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558.
  • E.B. Davis, The structure and the ideal theory of the pre-dual of a Banach lattice, Trans. Amer. Math. Soc. 131 (1968), 544–555.
  • M. De Wilde, B. Tsirulnikov, Barrelled spaces with a B-complete completion, Manuscripta Math. 33 (1981), 411 – 427.
  • J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Berlin, Heidelberg, New York Springer 1984.
  • J. Diestel, R.H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39–44.
  • J. Diestel, J.J. Uhl, Vector Measures, AMS Surveys No. 15, Amer. Math. Soc., Providence, R.I. 1977.
  • P. Domański, D. Vogt, A splitting theorem for the space of smooth functions, J. Funct. Anal. 153 (1998), 203–248.
  • G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Archive Math. (Basel) 58 (1992), 477–485.
  • G. Emmanuele, On Banach spaces with the Gelfand-Phillips property III, J. Math. Pure. Appl. 72 (1993) 327–333.
  • G. Emmanuele, About the position of $K_{w^*}(E^*,F)$ inside $L_{w^*}(E^*,F)$, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 123–133.
  • G. Emmanuele, On complemented copies of $c_0$ in spaces of operators. II, Comment. Math. Univ. Carolin. 35 (1994), no. 2, 259–261.
  • G. Emmanuele, On relative compactness in K(X,Y), J. Math. Anal. Appl. 397 (2013), 88–90.
  • G. Emmanuele, K. John, Uncomplementability of spaces of compact operators in larger spaces of operators, Czechoslovak Math. J. 47 (122) (1997), no. 1, 19–32.
  • G. Emmanuele, K. John, The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized, Czechoslovak Math. J. 50 (125) (2000), no. 1, 75–82.
  • J.C. Ferrando, Copies of $c_0$ in certain vector-valued function Banach spaces, Math. Scand. 77 (1995), no. 1, 148–152.
  • J.C. Ferrando, Complemented copies of $c_0$ in $ba(\Sigma,X)$, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 321–324.
  • J.C. Ferrando, On copies of $c_0$ and $l_\infty$ in $L_{w^*}(X^*,Y)$, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 2, 259–264.
  • J.C. Ferrando, Complemented copies of $c_0$ in spaces of operators, Acta Math. Hungar. 99 (2003), no. 1-2, 57–61.
  • J.C. Ferrando, On Pettis integrability, Czechoslovak Math. J. 53 (128) (2003), no. 4, 1009–1015.
  • J.C. Ferrando, Copies of $\ell_\infty$ in the space of Pettis integrable functions with integrals of finite variation, Studia Math. 210 (2012), no. 1, 93–98.
  • J.C. Ferrando, Copies of $c_0$ in the space of Pettis integrable functions with integrals of finite variation, Acta Math. Hungar. 135 (2012), no. 1-2, 24–30.
  • J.C. Ferrando, J.M. Amigó, On copies of the null sequence Banach space in some vector measure spaces, Bull. Austral. Math. Soc. 59 (1999), no. 3, 443–447.
  • J.C. Ferrando, J.M. Amigó, On copies of $c_0$ in the bounded linear operator space, Czechoslovak Math. J. 50 (125) (2000), no. 3, 651–656.
  • J.C. Ferrando, S.V. Lüdkovsky, Some barrelledness properties of $c_0(\Omega, X)$, J. Math. Anal. Appl. 274 (2002), 577–585.
  • J.C. Ferrando, L.M. Sanchez Ruiz, A survey on recent advances on the Nikodým boundedness theorem and spaces of simple functions, Rocky Mountains J. Math. 34 (2004), 139–172.
  • J.C. Ferrando, L.M. Sanchez Ruiz, Barrelledness in $\ell_\infty(\Omega, X)$ subspaces, J. Math. Anal. Appl. 303 (2005), 486–491.
  • W. Filter, I. Labuda, Essays on the Orlicz-Pettis theorem, Real Analysis Exchange 16 (1991), 393–403.
  • C. Finol, M. Wójtowicz, Complemented copies of $\ell_1$ in Banach spaces with an unconditional basis, J. Math. Anal. Appl. 342 (2008), 83–88.
  • W. Freedman, An extension property for Banach spaces, Colloq. Math. 91 (2002), 167–182.
  • F.J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), 479-486.
  • N.A. Friedman, A.E. Tong, Additive operators, Can. J. Math. 23 (1971), 468–480.
  • E.M. Galego, On solutions of the Schroeder-Bernstein problem for Banach spaces, Arch. Math. 79 (2002), 299–307.
  • L. Gerencsér, On the theorem of Lyapunoff, Studia Sci. Hungar. 8 (1973), 273–284.
  • I. Ghenciu, P. Lewis, The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets, Colloq. Math. 106 (2006), 311–324.
  • I. Ghenciu, P. Lewis, The embeddability of $c_0$ in spaces of operators, Bull. Pol. Acad. Sci. Math. 56, No. 3-4, (2008), 239–256.
  • I. Ghenciu, P. Lewis, Completely continuous operators, Colloq. Math. 126 (2012), 231–256.
  • J. Globevnik, Separability of analytic images of some Banach spaces, Comp. Math. 38 (1979), 347–354.
  • S. Goldberg, Unbounded Linear Operators, McGrew-Hill, New York 1966.
  • W.T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851–874.
  • W.T. Gowers, A solution to the Schroeder-Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996), 297–304.
  • G. Groenewegen, On spaces of Banach lattice valued functions and mesures, Thesis, Univ. Nijmegen, Nijmegen 1982.
  • G. Groenewegen, A. van Rooij, The modulus of a weakly compact operator, Math. Z. 195 (1987), 473–480.
  • V.I. Gurariĭ, On dissolutions and inclinations of subspaces of Banach spaces, Teor. Funkcii Funkcional. Anal. Priloz. 1 (1965), 194–204 (in Russian).
  • M. Grzech, Set theoretical aspects of the Banach space $\ell_\infty/c_0$, Ann. Pure Appl. Logic 126 (2004), no. 1-3, 301–308.
  • A. Haldimann, H. Jarchow, Nevanlinna algebras, Studia Math. 147 (2001), 243–268.
  • P.R. Halmos, The range of a vector mesure, Bull. Amer. Math. Soc. 54 (1948), 416–421.
  • J. Hoffmann-Jørgensen, Vector measures, Math. Scan. 28 (1971), 5–32.
  • Z. Hu, M.A. Smith, On the extremal structure of the unit balls of Banach spaces of weakly continuous functions and their duals, Trans. Amer. Math. Soc. 349 (1997), 1901–1918.
  • L. Janicka and N. J. Kalton, Vector measures of infinite variation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 239-241.
  • H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981.
  • B. Josefson, Uniform bounds for limited sets and applications to bounding sets, Math. Scand. 86 (2000), 223–243.
  • B. Josefson, A Gelfand-Phillips space not containing $l\sb 1$ whose dual ball is not weak$\sp *$ sequentially compact, Glasgow Math. J. 43 (2001), 125–128.
  • N.J. Kalton, Subseries convergence in topological groups and vector measures, Israel J. Math. 10 (1971), 402–412.
  • N.J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267–278.
  • N.J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Camb. Phil. Soc. 81 (1977), 253–277.
  • N.J. Kalton, The Orlicz-Pettis theorem, Contemporary Mathematics 2 (1980), 91–100.
  • N.J. Kalton, The basic sequence problem, Studia Math. 116 (1995), 167–187.
  • N.J. Kalton, N.T. Peck. J.W. Roberts, $L_0$-valued vector measures are bounded, Proc. Amer. Math. Soc. 85 (1982), 575–582.
  • N.J. Kalton, N.T. Peck, J.W. Roberts, An F-space Sampler, London Mathematical Society Lecture Note Series, 89, Cambridge University Press, Cambridge, 1984.
  • N.J. Kalton, J.W. Roberts, Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 287 (1983), 803–816.
  • N.J. Kalton, J.H. Shapiro, Bases and basic sequences in F-spaces, Studia Math. 56 (1976), 47–61.
  • T. Kania, N.J. Laustsen, Uniqueness of the maximal ideal of the Banach algebra of bounded operators on $C([0,\omega_1])$, J. Funct. Anal. 262 (2012), no. 11, 4831–4850.
  • J. Kąkol, M. López Pellicer, Compact coverings for Baire locally convex spaces, J. Math. Anal. Appl. 332 (2007), no. 2, 965–974.
  • A.R. Khan, K. Rowlands, On locally solid topological lattice groups, Czechoslovak Math. J. 57 (2007), 963–973.
  • I. Kluvánek, G. Knowles, Vector Measures and Control Systems, Norht Holland, Amsterdam 1975.
  • P. Koszmider, A $C(K)$ Banach space which does not have Schroeder-Bernstein property, Studia Math. 212 (2012), 95–117
  • G. Kronsbein, P. Meyer-Nieberg, Factorization of vector measures, Arch. Math. 63 (1994), 541–548.
  • A.G. Kusraev, M.A. Pliev, Orthogonally additive majorized operators, Dokl. Akad. Nauk 372 (2000), 305–307.
  • A.A. Lapunov, Sur les fonctions - vecteurs completement additives, Izv. Akad. Nauk USSR Ser Mat. 8 (1940), 465–478.
  • B. Lavrič, A characterization of Banach lattices with order continuous norm, Radovi Matematicki 8 (1992), 37–41.
  • J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971–972.
  • M. Lindström, T. Schlumprecht, On limited sets in locally convex spaces, Arch. Math. 53 (1989), 65–74.
  • H.P. Lotz, Über das Spektrum positiver Operatoren, Math. Z. 108 (1968), 15–32.
  • G.W. Mackey, On infinite dimensional linear spaces, Trans. Amer. Math. Soc. 57 (1945), 155–207.
  • G.W. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52 (1946), 322–325.
  • D. Maharam, An algebraic characterization of measure algebras, Ann. of Math. 48 (1947), 154–167.
  • M. Marcus, V.J. Mizel, Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces, Trans. Amer. Math. Soc. 228 (1977), 1–45.
  • P. Meyer-Nieberg, Banach Lattices, Springer Verlag, Berlin Heidelberg New York, 1991.
  • V.J. Mizel, K. Sundaresan, Representation of vector valued nonlinear functions, Trans. Amer. Math. Soc. 159 (1971), 111–127.
  • A. Murray, Quasi-complements and closed projections in reflexive Banach spaces, Trans. Amer. Math. Soc. 58 (1945), 77–95.
  • K. Musiał, Absolute continuity and the range of group valued measure, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 105–113.
  • M. Nawrocki, On the Orlicz-Pettis property in nonlocally convex F-spaces, Proc. Amer. Math. Soc. 101 (1987), 492–496.
  • M. Nawrocki, Multipliers, linear functionals and the Fréchet envelope of the Smirnov class $N^+(U^n)$, Trans. Amer. Math. Soc. 322 (1990), 493–506.
  • E. Pap (editor), Handbook of Measure Theory vol. I and II, Elsevier, 2002.
  • P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, Amsterdam, 1987.
  • B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277–304.
  • A. Picón, C. Piñeiro, Vector measure Banach spaces containing a complemented copy of $c_0$, Proc. Amer. Math. Soc. 132 (2004), 2893–2898.
  • S. Rolewicz, Metric Linear Spaces, PWN, Warszawa 1972
  • H.P. Rosenthal, On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), 167–175.
  • H.P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13–36.
  • V.I. Rybakov, Theorem of Bartle, Dunford and Schwartz on vector-valued measures, Mat. Zametki 7 (1970), 247–254 (in Russian).
  • W. Schachermayer, On some classical measure-theoretic theorems for non $\sigma$-complete Boolean algebras, Dissertationes Math. 214 (1982), 1–36.
  • H.H. Schaefer, Xiao-Dong Zhang, A note on order bounded vector measures, Arch. Math. 63 (1994), 152–157.
  • T. Schlumprecht, Limited sets in $C(K)$-spaces and examples concerning the Gelfand-Phillips property, Math. Nachr. 157 (1992), 51–64.
  • K.D. Schmidt, On the modulus of weakly compact operators and strongly additive vector measures, Proc. Amer. Math. Soc. 102 (1988), 862–866.
  • J.H. Shapiro, On the weak basis theorem in F-spaces, Canadian J. Math. 26 (1974), 1294–1300.
  • J.H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187–202.
  • W.J. Stiles, On properties of subspaces of $\ell_p$, $0<p<1$, Trans. Amer. Math. Soc. 149 (1970), 405–415.
  • Ch. Stuart, A generalization of the Nikodým boundedness theorem, Collect. Math. 58 (2007), no. 2, 151–154.
  • Ch. Stuart, P. Abraham, Generalizations of the Nikodým boundedness and Vitali-Hahn-Saks theorems, J. Math. Anal. Appl. 300 (2004), no. 2, 351–361.
  • K. Sundaresan, Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc. 34 (1972), 187–190.
  • M. Talagrand, Les mesures vectorielles á valuers dans $L^0$ sont bornées, Ann. Sci. Ecole Norm. Sup. 14 (1981), 445–452.
  • M. Talagrand Pettis Integral and Measure Theory, Mem. Amer. Math. Soc. No 307 Amer. Math. Soc., Providence, RI (1984).
  • M. Talagrand, Maharam's problem, Ann. of Math. 168 (2008), 981–1009.
  • G.E.F. Thomas, Totally summable functions with values in locally convex spaces, Measure Theory (Proc. Conf. Oberwolfach, 1975), Lecture Notes in Math., vol. 541, Springer-Verlag, Berlin, Heidelberg and New York, 1976, pp. 117-131.
  • S. Troyanski, On non-separable Banach spaces with a symmetric basis, Studia Math. 53 (1975), 253–263.
  • P. Turpin, Une measure vectoriele non bornée, C.R. Acad. Sci. Paris 280 (1975), 509–511.
  • I. Tweddle, Weak compactness in locally convex spaces, Glasgow Math. J. 9 (1968), 123–127.
  • J.J. Uhl, The range of vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158–163.
  • B.J. Walsh, Mutual absolute continuity of sets of measures, Proc. Amer. Math. Soc. 29 (1971), 506–510.
  • N. Weaver, Set theory and $C^*$-algebras, Bull. Symbolic Logic 13 (2007), no. 1, 1–20.
  • W. Wnuk, The converse of Lapunov convexity theorem, Comment. Math. Prace Mat. 21 (1979), 389–390.
  • W. Wnuk, Banach Lattices with Order Continuous Norms, Advanced Topics in Mathematics, Polish Scientific Publishers PWN, Warsaw, 1999.
  • W. Wnuk, B. Wiatrowski, Order properties of quotient Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 417–428.