Functiones et Approximatio Commentarii Mathematici

On the work of Lech Drewnowski

Paweł Domański and Witold Wnuk

Full-text: Open access

Article information

Source
Funct. Approx. Comment. Math., Volume 50, Number 1 (2014), 7-53.

Dates
First available in Project Euclid: 27 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.facm/1395924285

Digital Object Identifier
doi:10.7169/facm/2014.50.1.1

Mathematical Reviews number (MathSciNet)
MR3189501

Zentralblatt MATH identifier
1296.26008

Citation

Domański, Paweł; Wnuk, Witold. On the work of Lech Drewnowski. Funct. Approx. Comment. Math. 50 (2014), no. 1, 7--53. doi:10.7169/facm/2014.50.1.1. https://projecteuclid.org/euclid.facm/1395924285


Export citation

References

  • A. Aizpuru, A. Gutiérrez-Dávila, Sequences of measures on atomic subalgebras of $\mathcal{P}(\wstepbN)$, Quaestiones Mathematicae 30 (2007), 381–389.
  • C. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs vol. 105, American Mathematical Society, 2003.
  • R. Anantharaman, The sequence of Rademacher averages of mesurable sets, Comment. Math. Prace Mat. 30 (1990), 5–8.
  • R. Anantharaman, K.M. Garg, The properties of a residual set of vector mesures, Lecture Notes in Math. 1033 Springer-Verlag, Berlin, Heidelberg and New York, 1983, 12-35.
  • S.I. Ansari, On Banach spaces $Y$ for which $B(C(\Omega),Y)=K(C(\Omega), Y)$, Pacific J. Math. 169 (1995), 201–218.
  • R.G. Bartle, N. Dunfrod, J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289–305.
  • J. Batt, Strongly additive transformations and integral representations with measures of non-linear operators, Bull. Amer. Soc. Math. 78 (1972), 474–478.
  • Y. Benyamini, S. Lassalle, J.G. Llavona, Homogeneous orthogonally additive polynomials on Banach lattices, Bull. London Math. Soc. 38 (2006), 459–469.
  • J. Bonet, J.C. Dí az, The density condition in subspaces and quotients of Fréchet spaces, Monatsh. Math. 117 (1994), 199–212.
  • J. Bonet, P. Domański, M. Lindtröm, Cotype and complemented copies of $c_0$ in spaces of operators, Czechoslovak Math. J. 46 (1996), 271–289.
  • J. Bonet, P. Domański, M. Lindström, M. S. Ramanujan, Operator spaces containing $c_0$ or $\ell_\infty$, Results Math. 28 (1995), 250–269.
  • J. Bonet, M. Lindström, M. Valdivia, Two theorems of Josefson-Nissenzweig type for Fréchet spaces, Proc. Amer. Math. Soc. 117 (1993), 363–364.
  • J. Boos, T. Leiger, On some `duality' of the Nikodým property and the Hahn property, J. Math. Appl. Anal. 341 (2008), 235–246.
  • J. Boos, T. Leiger, `Duality' of the Nikodým property and the Hahn property: Densities defined by sequences of matrices, J. Math. Anal. Appl. 380 (2011), 224–231.
  • P. Borodulin-Nadzieja, G. Plebanek, On sequential properties of Banach spaces, spaces of measures and densities, Czechoslovak Math. J. 60 (2010), 381–399.
  • J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58.
  • J. Brzdęk, J. Sikorska, A conditional exponential functional equation and its stability, Nonlinear Anal. 72 (2010), 2923–2934.
  • G. Buttazzo, G. Dalmaso, A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand, J. Math. Pure Appl. 64 (1985), 337–361.
  • M. Capon, Primariness of certain Banach spaces, Proc. London Math. Soc. 45 (1982), 113–130.
  • P. Cembranos, $C(K,E)$ contains a complemented copy of $c_0$, Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558.
  • E.B. Davis, The structure and the ideal theory of the pre-dual of a Banach lattice, Trans. Amer. Math. Soc. 131 (1968), 544–555.
  • M. De Wilde, B. Tsirulnikov, Barrelled spaces with a B-complete completion, Manuscripta Math. 33 (1981), 411 – 427.
  • J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Berlin, Heidelberg, New York Springer 1984.
  • J. Diestel, R.H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39–44.
  • J. Diestel, J.J. Uhl, Vector Measures, AMS Surveys No. 15, Amer. Math. Soc., Providence, R.I. 1977.
  • P. Domański, D. Vogt, A splitting theorem for the space of smooth functions, J. Funct. Anal. 153 (1998), 203–248.
  • G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Archive Math. (Basel) 58 (1992), 477–485.
  • G. Emmanuele, On Banach spaces with the Gelfand-Phillips property III, J. Math. Pure. Appl. 72 (1993) 327–333.
  • G. Emmanuele, About the position of $K_{w^*}(E^*,F)$ inside $L_{w^*}(E^*,F)$, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 123–133.
  • G. Emmanuele, On complemented copies of $c_0$ in spaces of operators. II, Comment. Math. Univ. Carolin. 35 (1994), no. 2, 259–261.
  • G. Emmanuele, On relative compactness in K(X,Y), J. Math. Anal. Appl. 397 (2013), 88–90.
  • G. Emmanuele, K. John, Uncomplementability of spaces of compact operators in larger spaces of operators, Czechoslovak Math. J. 47 (122) (1997), no. 1, 19–32.
  • G. Emmanuele, K. John, The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized, Czechoslovak Math. J. 50 (125) (2000), no. 1, 75–82.
  • J.C. Ferrando, Copies of $c_0$ in certain vector-valued function Banach spaces, Math. Scand. 77 (1995), no. 1, 148–152.
  • J.C. Ferrando, Complemented copies of $c_0$ in $ba(\Sigma,X)$, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 321–324.
  • J.C. Ferrando, On copies of $c_0$ and $l_\infty$ in $L_{w^*}(X^*,Y)$, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 2, 259–264.
  • J.C. Ferrando, Complemented copies of $c_0$ in spaces of operators, Acta Math. Hungar. 99 (2003), no. 1-2, 57–61.
  • J.C. Ferrando, On Pettis integrability, Czechoslovak Math. J. 53 (128) (2003), no. 4, 1009–1015.
  • J.C. Ferrando, Copies of $\ell_\infty$ in the space of Pettis integrable functions with integrals of finite variation, Studia Math. 210 (2012), no. 1, 93–98.
  • J.C. Ferrando, Copies of $c_0$ in the space of Pettis integrable functions with integrals of finite variation, Acta Math. Hungar. 135 (2012), no. 1-2, 24–30.
  • J.C. Ferrando, J.M. Amigó, On copies of the null sequence Banach space in some vector measure spaces, Bull. Austral. Math. Soc. 59 (1999), no. 3, 443–447.
  • J.C. Ferrando, J.M. Amigó, On copies of $c_0$ in the bounded linear operator space, Czechoslovak Math. J. 50 (125) (2000), no. 3, 651–656.
  • J.C. Ferrando, S.V. Lüdkovsky, Some barrelledness properties of $c_0(\Omega, X)$, J. Math. Anal. Appl. 274 (2002), 577–585.
  • J.C. Ferrando, L.M. Sanchez Ruiz, A survey on recent advances on the Nikodým boundedness theorem and spaces of simple functions, Rocky Mountains J. Math. 34 (2004), 139–172.
  • J.C. Ferrando, L.M. Sanchez Ruiz, Barrelledness in $\ell_\infty(\Omega, X)$ subspaces, J. Math. Anal. Appl. 303 (2005), 486–491.
  • W. Filter, I. Labuda, Essays on the Orlicz-Pettis theorem, Real Analysis Exchange 16 (1991), 393–403.
  • C. Finol, M. Wójtowicz, Complemented copies of $\ell_1$ in Banach spaces with an unconditional basis, J. Math. Anal. Appl. 342 (2008), 83–88.
  • W. Freedman, An extension property for Banach spaces, Colloq. Math. 91 (2002), 167–182.
  • F.J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), 479-486.
  • N.A. Friedman, A.E. Tong, Additive operators, Can. J. Math. 23 (1971), 468–480.
  • E.M. Galego, On solutions of the Schroeder-Bernstein problem for Banach spaces, Arch. Math. 79 (2002), 299–307.
  • L. Gerencsér, On the theorem of Lyapunoff, Studia Sci. Hungar. 8 (1973), 273–284.
  • I. Ghenciu, P. Lewis, The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets, Colloq. Math. 106 (2006), 311–324.
  • I. Ghenciu, P. Lewis, The embeddability of $c_0$ in spaces of operators, Bull. Pol. Acad. Sci. Math. 56, No. 3-4, (2008), 239–256.
  • I. Ghenciu, P. Lewis, Completely continuous operators, Colloq. Math. 126 (2012), 231–256.
  • J. Globevnik, Separability of analytic images of some Banach spaces, Comp. Math. 38 (1979), 347–354.
  • S. Goldberg, Unbounded Linear Operators, McGrew-Hill, New York 1966.
  • W.T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851–874.
  • W.T. Gowers, A solution to the Schroeder-Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996), 297–304.
  • G. Groenewegen, On spaces of Banach lattice valued functions and mesures, Thesis, Univ. Nijmegen, Nijmegen 1982.
  • G. Groenewegen, A. van Rooij, The modulus of a weakly compact operator, Math. Z. 195 (1987), 473–480.
  • V.I. Gurariĭ, On dissolutions and inclinations of subspaces of Banach spaces, Teor. Funkcii Funkcional. Anal. Priloz. 1 (1965), 194–204 (in Russian).
  • M. Grzech, Set theoretical aspects of the Banach space $\ell_\infty/c_0$, Ann. Pure Appl. Logic 126 (2004), no. 1-3, 301–308.
  • A. Haldimann, H. Jarchow, Nevanlinna algebras, Studia Math. 147 (2001), 243–268.
  • P.R. Halmos, The range of a vector mesure, Bull. Amer. Math. Soc. 54 (1948), 416–421.
  • J. Hoffmann-Jørgensen, Vector measures, Math. Scan. 28 (1971), 5–32.
  • Z. Hu, M.A. Smith, On the extremal structure of the unit balls of Banach spaces of weakly continuous functions and their duals, Trans. Amer. Math. Soc. 349 (1997), 1901–1918.
  • L. Janicka and N. J. Kalton, Vector measures of infinite variation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 239-241.
  • H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981.
  • B. Josefson, Uniform bounds for limited sets and applications to bounding sets, Math. Scand. 86 (2000), 223–243.
  • B. Josefson, A Gelfand-Phillips space not containing $l\sb 1$ whose dual ball is not weak$\sp *$ sequentially compact, Glasgow Math. J. 43 (2001), 125–128.
  • N.J. Kalton, Subseries convergence in topological groups and vector measures, Israel J. Math. 10 (1971), 402–412.
  • N.J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267–278.
  • N.J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Camb. Phil. Soc. 81 (1977), 253–277.
  • N.J. Kalton, The Orlicz-Pettis theorem, Contemporary Mathematics 2 (1980), 91–100.
  • N.J. Kalton, The basic sequence problem, Studia Math. 116 (1995), 167–187.
  • N.J. Kalton, N.T. Peck. J.W. Roberts, $L_0$-valued vector measures are bounded, Proc. Amer. Math. Soc. 85 (1982), 575–582.
  • N.J. Kalton, N.T. Peck, J.W. Roberts, An F-space Sampler, London Mathematical Society Lecture Note Series, 89, Cambridge University Press, Cambridge, 1984.
  • N.J. Kalton, J.W. Roberts, Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 287 (1983), 803–816.
  • N.J. Kalton, J.H. Shapiro, Bases and basic sequences in F-spaces, Studia Math. 56 (1976), 47–61.
  • T. Kania, N.J. Laustsen, Uniqueness of the maximal ideal of the Banach algebra of bounded operators on $C([0,\omega_1])$, J. Funct. Anal. 262 (2012), no. 11, 4831–4850.
  • J. Kąkol, M. López Pellicer, Compact coverings for Baire locally convex spaces, J. Math. Anal. Appl. 332 (2007), no. 2, 965–974.
  • A.R. Khan, K. Rowlands, On locally solid topological lattice groups, Czechoslovak Math. J. 57 (2007), 963–973.
  • I. Kluvánek, G. Knowles, Vector Measures and Control Systems, Norht Holland, Amsterdam 1975.
  • P. Koszmider, A $C(K)$ Banach space which does not have Schroeder-Bernstein property, Studia Math. 212 (2012), 95–117
  • G. Kronsbein, P. Meyer-Nieberg, Factorization of vector measures, Arch. Math. 63 (1994), 541–548.
  • A.G. Kusraev, M.A. Pliev, Orthogonally additive majorized operators, Dokl. Akad. Nauk 372 (2000), 305–307.
  • A.A. Lapunov, Sur les fonctions - vecteurs completement additives, Izv. Akad. Nauk USSR Ser Mat. 8 (1940), 465–478.
  • B. Lavrič, A characterization of Banach lattices with order continuous norm, Radovi Matematicki 8 (1992), 37–41.
  • J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971–972.
  • M. Lindström, T. Schlumprecht, On limited sets in locally convex spaces, Arch. Math. 53 (1989), 65–74.
  • H.P. Lotz, Über das Spektrum positiver Operatoren, Math. Z. 108 (1968), 15–32.
  • G.W. Mackey, On infinite dimensional linear spaces, Trans. Amer. Math. Soc. 57 (1945), 155–207.
  • G.W. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52 (1946), 322–325.
  • D. Maharam, An algebraic characterization of measure algebras, Ann. of Math. 48 (1947), 154–167.
  • M. Marcus, V.J. Mizel, Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces, Trans. Amer. Math. Soc. 228 (1977), 1–45.
  • P. Meyer-Nieberg, Banach Lattices, Springer Verlag, Berlin Heidelberg New York, 1991.
  • V.J. Mizel, K. Sundaresan, Representation of vector valued nonlinear functions, Trans. Amer. Math. Soc. 159 (1971), 111–127.
  • A. Murray, Quasi-complements and closed projections in reflexive Banach spaces, Trans. Amer. Math. Soc. 58 (1945), 77–95.
  • K. Musiał, Absolute continuity and the range of group valued measure, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 105–113.
  • M. Nawrocki, On the Orlicz-Pettis property in nonlocally convex F-spaces, Proc. Amer. Math. Soc. 101 (1987), 492–496.
  • M. Nawrocki, Multipliers, linear functionals and the Fréchet envelope of the Smirnov class $N^+(U^n)$, Trans. Amer. Math. Soc. 322 (1990), 493–506.
  • E. Pap (editor), Handbook of Measure Theory vol. I and II, Elsevier, 2002.
  • P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, Amsterdam, 1987.
  • B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277–304.
  • A. Picón, C. Piñeiro, Vector measure Banach spaces containing a complemented copy of $c_0$, Proc. Amer. Math. Soc. 132 (2004), 2893–2898.
  • S. Rolewicz, Metric Linear Spaces, PWN, Warszawa 1972
  • H.P. Rosenthal, On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), 167–175.
  • H.P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13–36.
  • V.I. Rybakov, Theorem of Bartle, Dunford and Schwartz on vector-valued measures, Mat. Zametki 7 (1970), 247–254 (in Russian).
  • W. Schachermayer, On some classical measure-theoretic theorems for non $\sigma$-complete Boolean algebras, Dissertationes Math. 214 (1982), 1–36.
  • H.H. Schaefer, Xiao-Dong Zhang, A note on order bounded vector measures, Arch. Math. 63 (1994), 152–157.
  • T. Schlumprecht, Limited sets in $C(K)$-spaces and examples concerning the Gelfand-Phillips property, Math. Nachr. 157 (1992), 51–64.
  • K.D. Schmidt, On the modulus of weakly compact operators and strongly additive vector measures, Proc. Amer. Math. Soc. 102 (1988), 862–866.
  • J.H. Shapiro, On the weak basis theorem in F-spaces, Canadian J. Math. 26 (1974), 1294–1300.
  • J.H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187–202.
  • W.J. Stiles, On properties of subspaces of $\ell_p$, $0<p<1$, Trans. Amer. Math. Soc. 149 (1970), 405–415.
  • Ch. Stuart, A generalization of the Nikodým boundedness theorem, Collect. Math. 58 (2007), no. 2, 151–154.
  • Ch. Stuart, P. Abraham, Generalizations of the Nikodým boundedness and Vitali-Hahn-Saks theorems, J. Math. Anal. Appl. 300 (2004), no. 2, 351–361.
  • K. Sundaresan, Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc. 34 (1972), 187–190.
  • M. Talagrand, Les mesures vectorielles á valuers dans $L^0$ sont bornées, Ann. Sci. Ecole Norm. Sup. 14 (1981), 445–452.
  • M. Talagrand Pettis Integral and Measure Theory, Mem. Amer. Math. Soc. No 307 Amer. Math. Soc., Providence, RI (1984).
  • M. Talagrand, Maharam's problem, Ann. of Math. 168 (2008), 981–1009.
  • G.E.F. Thomas, Totally summable functions with values in locally convex spaces, Measure Theory (Proc. Conf. Oberwolfach, 1975), Lecture Notes in Math., vol. 541, Springer-Verlag, Berlin, Heidelberg and New York, 1976, pp. 117-131.
  • S. Troyanski, On non-separable Banach spaces with a symmetric basis, Studia Math. 53 (1975), 253–263.
  • P. Turpin, Une measure vectoriele non bornée, C.R. Acad. Sci. Paris 280 (1975), 509–511.
  • I. Tweddle, Weak compactness in locally convex spaces, Glasgow Math. J. 9 (1968), 123–127.
  • J.J. Uhl, The range of vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158–163.
  • B.J. Walsh, Mutual absolute continuity of sets of measures, Proc. Amer. Math. Soc. 29 (1971), 506–510.
  • N. Weaver, Set theory and $C^*$-algebras, Bull. Symbolic Logic 13 (2007), no. 1, 1–20.
  • W. Wnuk, The converse of Lapunov convexity theorem, Comment. Math. Prace Mat. 21 (1979), 389–390.
  • W. Wnuk, Banach Lattices with Order Continuous Norms, Advanced Topics in Mathematics, Polish Scientific Publishers PWN, Warsaw, 1999.
  • W. Wnuk, B. Wiatrowski, Order properties of quotient Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 417–428.