Functiones et Approximatio Commentarii Mathematici

Variations of the Ramanujan polynomials and remarks on $\zeta(2j+1)/\pi^{2j+1}$

Matilde N. Lalín and Mathew D. Rogers

Full-text: Open access


We observe that five polynomial families have all of their roots on the unit circle. We prove the statements explicitly for four of the polynomial families. The polynomials have coefficients which involve Bernoulli numbers, Euler numbers, and the odd values of the Riemann zeta function. These polynomials are closely related to the Ramanujan polynomials, which were recently introduced by Murty, Smyth and Wang [MSW]. Our proofs rely upon theorems of Schinzel [S], and Lakatos and Losonczi [LL] and some generalizations.

Article information

Funct. Approx. Comment. Math., Volume 48, Number 1 (2013), 91-111.

First available in Project Euclid: 25 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 26C10: Polynomials: location of zeros [See also 12D10, 30C15, 65H05]
Secondary: 11B68: Bernoulli and Euler numbers and polynomials

Ramanujan polynomials Riemann zeta function values reciprocal polynomials roots on the unit circle Bernoulli numbers Euler numbers.


Lalín, Matilde N.; Rogers, Mathew D. Variations of the Ramanujan polynomials and remarks on $\zeta(2j+1)/\pi^{2j+1}$. Funct. Approx. Comment. Math. 48 (2013), no. 1, 91--111. doi:10.7169/facm/2013.48.1.8.

Export citation


  • M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Washington, D.C. 1964.
  • R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérique 61, (1979) 11–13.
  • K. Ball abd T. Rivoal, Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math. 146 (2001), no. 1, 193–207.
  • B.,C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1985.
  • C. D'Aniello, On some inequalities for the Bernoulli numbers, Rend. Circ. Mat. Palermo 43 (1994), 329–332.
  • K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60 (1996), no. 1, 23–41.
  • S. Gun, M. R. Murty, P. Rath, Transcendental values of certain Eichler integrals, Bull. Lond. Math. Soc. 43 (2011), no. 5, 939–952.
  • T. Hessami Pilerud, Kh. Hessami Pilerud On the irrationality of the sums of zeta values, Math. Notes 79 (2006), no. 3-4, 561–571.
  • P. Lakatos, On zeros of reciprocal polynomials, Publ. Math. Debrecen 61 (2002), no. 3-4, 645–661.
  • P. Lakatos and L. Losonczi, Polynomials with all zeros on the unit circle, Acta Math. Hungar. 125 (2009), no. 4, 341–356.
  • M. N. Lalín and C. J. Smyth, Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar. 138 (2013), no. 1-2, 85–101.
  • M. R. Murty, C. J. Smyth and R. J. Wang, Zeros of Ramanujan polynomials, J. of the Ramanujan Math. Soc. 26 (2011), no. 1, 107–125.
  • A. van der Poorten, A proof that Euler missed$\ldots $Apéry's proof of the irrationality of $\zeta (3)$. An informal report, Math. Intelligencer 1 (1978/79), no. 4, 195–203.
  • T. Rivoal, La fonction zeta de Riemann prend une infinité de valeurs irrationelles aux entiers impairs, C. R. Acad. Sci. Paris. Sér. I Math. 331 (2000), no. 4, 267–270.
  • A. Schinzel, Self-inversive polynomials with all zeros on the unit circle, Ramanujan J. 9, (2005), 19–23.
  • W. Zudilin, Arithmetic of linear forms involving odd zeta values, J. Théor. Nombres Bordeaux 16 (2004), no. 1, 251–291.