Functiones et Approximatio Commentarii Mathematici

Inhomogeneous quadratic congruences

S. Baier and T.D. Browning

Full-text: Open access

Abstract

For given positive integers $a,b,q$ we investigate the density of solutions $(x,y)\in \mathbb{Z}^2$ to congruences $ax+by^2\equiv 0 \bmod{q}$.

Article information

Source
Funct. Approx. Comment. Math., Volume 47, Number 2 (2012), 267-286.

Dates
First available in Project Euclid: 20 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.facm/1356012919

Digital Object Identifier
doi:10.7169/facm/2012.47.2.9

Mathematical Reviews number (MathSciNet)
MR3051452

Zentralblatt MATH identifier
1351.11063

Subjects
Primary: 11N69: Distribution of integers in special residue classes
Secondary: 11D45: Counting solutions of Diophantine equations 11D79: Congruences in many variables

Keywords
quadratic congruences Manin's conjecture Gauss sums

Citation

Baier, S.; Browning, T.D. Inhomogeneous quadratic congruences. Funct. Approx. Comment. Math. 47 (2012), no. 2, 267--286. doi:10.7169/facm/2012.47.2.9. https://projecteuclid.org/euclid.facm/1356012919


Export citation

References

  • S. Baier and T.D. Browning, Inhomogeneous cubic congruences and rational points on del Pezzo surfaces, J. reine angew. Math, to appear.
  • T.D. Browning and U. Derenthal, Manin's conjecture for a cubic surface with $\mathbf{D}_5$ singularity, Int. Math. Res. Not. 14 (2009), 2620–2647.
  • U. Derenthal, Counting integral points on universal torsors, Int. Math. Res. Not. 14 (2009), 2648–2699.
  • U. Derenthal and Y. Tschinkel, Universal torsors over del Pezzo surfaces and rational points, Equidistribution in number theory, 169–196, NATO Sci. Ser. II 237, Springer, 2007.
  • T. Estermann, A new application of the Hardy–Littlewood–Kloosterman method, Proc. London Math. Soc. 12 (1962), 425–444.
  • S.W. Graham and G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note Series 126, CUP, 1991.
  • B. Hassett, Rational surfaces over nonclosed fields, Clay Mathematics Institute summer school in arithmetic geometry, Göttingen, July 17–August 11, 2006, 155–209, Clay Mathematics Proceedings 8, AMS, 2009.
  • D.R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235–275.
  • H. Iwaniec and E. Kowalski, Analytic number theory, American Math. Soc. Colloq. Pub. 53, AMS, 2004.
  • T. Nagell, Introduction to number theory, AMS Chelsea, 1951.
  • L. Pierce, The $3$-part of class numbers of quadratic fields, J. London Math. Soc. 71 (2005), 579–598.