Functiones et Approximatio Commentarii Mathematici

Numbers with integer expansion in the numeration system with negative base

Petr Ambrož, Daniel Dombek, Zuzana Masáková, and Edita Pelantová

Full-text: Open access

Abstract

In this paper, we study representations of real numbers in the positional numeration system with negative base, as introduced by Ito and Sadahiro. We focus on the set $\mathbb{Z}_{-\beta}$ of numbers whose representation uses only non-negative powers of $-\beta$, the so-called $(-\beta)$-integers. We describe the distances between consecutive elements of $\mathbb{Z}_{-\beta}$. In case that this set is non-trivial we associate to $\beta$ an infinite word $\boldsymbol{v}_{-\beta}$ over an (in general infinite) alphabet. The self-similarity of $\mathbb{Z}_{-\beta}$, i.e., the property $-\beta \\mathbb{Z}_{-\beta}\subset \mathbb{Z}_{-\beta}$, allows us to find a~morphism under which $\boldsymbol{v}_{-\beta}$ is invariant. On the example of two cubic irrational bases $\beta$ we demonstrate the difference between Rauzy fractals generated by $(-\beta)$-integers and by $\beta$-integers.

Article information

Source
Funct. Approx. Comment. Math., Volume 47, Number 2 (2012), 241-266.

Dates
First available in Project Euclid: 20 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.facm/1356012918

Digital Object Identifier
doi:10.7169/facm/2012.47.2.8

Mathematical Reviews number (MathSciNet)
MR3051451

Zentralblatt MATH identifier
1271.11009

Subjects
Primary: 11K16: Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc. [See also 11A63]
Secondary: 68R15: Combinatorics on words

Keywords
numeration system negative base Pisot numbers morphism

Citation

Ambrož, Petr; Dombek, Daniel; Masáková, Zuzana; Pelantová, Edita. Numbers with integer expansion in the numeration system with negative base. Funct. Approx. Comment. Math. 47 (2012), no. 2, 241--266. doi:10.7169/facm/2012.47.2.8. https://projecteuclid.org/euclid.facm/1356012918


Export citation

References

  • S. Akiyama, Pisot number system and its dual tiling, In “,\!Physics and Theoretical Computer Science”, ed. by J.P. Gazeau et al., IOS Press (2007), 133–154.
  • P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181–207.
  • Č. Burdí k, Ch. Frougny, J.P. Gazeau, R. Krejcar, Beta-Integers as Natural Counting Systems for Quasicrystals, J. Phys. A: Math. Gen. 31 (1998), 6449–6472.
  • S. Fabre, Substitutions et $\beta$-systèmes de numération, Theoret. Comput. Sci. 137 (1995), 219–236.
  • Ch. Frougny and A.C. Lai. On negative bases, In `Proceedings of DLT 09', Lectures Notes in Computer Science 5583 (2009), 252–263.
  • Ch. Frougny and B. Solomyak, Finite $\beta$-expansions, Ergodic Theory Dynam. Systems 12 (1994), 713–723.
  • S. Ito and T. Sadahiro, $(-\beta)$-expansions of real numbers, Integers 9 (2009), 239–259.
  • C. Kalle, W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, to appear in Trans. Amer. Math. Soc., (2010).
  • Z. Masáková, E. Pelantová, T. Vávra, Arithmetics in number systems with a negative base, Theor. Comp. Sci. 412 (2011), 835–845.
  • W. Parry, On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 401–416.
  • A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477–493.
  • W. Steiner, On the structure of $(-\beta)$-integers, RAIRO – Theoretical Informatics and Applications 46 (2012), 181–200.
  • W. Steiner, On the Delone property of $(-\beta)$-integers, in Proceedings WORDS 2011, EPTCS 63 (2011), 247–256.
  • W.P. Thurston, Groups, tilings, and finite state automata, AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.