Functiones et Approximatio Commentarii Mathematici

The meromorphic continuation of the zeta function of Siegel modular threefolds over totally real fields

Cristian Virdol

Full-text: Open access

Abstract

In this paper we prove the meromorphic continuation of the zeta function of Siegel modular threefolds over arbitrary totally real number fields.

Article information

Source
Funct. Approx. Comment. Math., Volume 47, Number 2 (2012), 143-148.

Dates
First available in Project Euclid: 20 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.facm/1356012911

Digital Object Identifier
doi:10.7169/facm/2012.47.2.2

Mathematical Reviews number (MathSciNet)
MR3051444

Zentralblatt MATH identifier
1320.11109

Subjects
Primary: 11F41: Automorphic forms on GL(2); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces [See also 14J20]
Secondary: 11F80: Galois representations 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27] 11R80: Totally real fields [See also 12J15]

Keywords
Siegel threefolds totally real fields meromorphic continuation

Citation

Virdol, Cristian. The meromorphic continuation of the zeta function of Siegel modular threefolds over totally real fields. Funct. Approx. Comment. Math. 47 (2012), no. 2, 143--148. doi:10.7169/facm/2012.47.2.2. https://projecteuclid.org/euclid.facm/1356012911


Export citation

References

  • T. Barnet-Lamb, T. Gee, D. Geraghty, R. Taylor, Potential automorphy and change of weight, preprint.
  • C.W. Curtis, I. Reiner, Methods of Representation Theory, Vol. I, Wiley, New York, 1981.
  • P. Deligne, Travaux de Shimura, Sém. Bourbaki Féb. 71, Exposé 389, Lectures Notes in Math. vol. 244. Berlin-Heidelberg-New York; Springer 1971.
  • G.Harder, R.P. Langlands, M.Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal-Flächen, J. Reine Angew. Math. 366 (1986), 53–120.
  • C. Skinner, E. Urban, Sur les déformations p-adiques de certaines représentations automorphes, J. Inst. Math. Jussieu 5 (2006), no. 4, 629–698.
  • R. Taylor, On the l-adic cohomology of Siegel threefolds, Invent. Math. 114 (1993), no. 2, 289–310.
  • C. Virdol, Base change and the Birch and Swinnerton-Dyer conjecture, Functiones et Approximatio, Commentarii Mathematici, to appear.
  • C. Virdol, The meromorphic continuation of the zeta function of a product of Hilbert and Picard modular surfaces over CM-fields, submitted.
  • R. Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J. Reine Angew. Math. 391 (1988), 100–156.
  • R. Weissauer, The Picard group of Siegel modular threefolds, J. Reine Angew. Math. 430 (1992), 179–211.
  • R. Weissauer, Endoscopy for GSp(4) and the cohomology of Siegel modular threefolds, Lecture Notes in Mathematics, 1968. Springer-Verlag, Berlin, 2009.
  • R. Weissauer, Four dimensional Galois representations. Formes automorphes. II. Le cas du groupe GSp(4) Astérisque No. 302 (2005), 67–150.