Functiones et Approximatio Commentarii Mathematici

Height reducing problem on algebraic integers

Shigeki Akiyama, Paulius Drungilas, and Jonas Jankauskas

Full-text: Open access


Let $\alpha$ be an algebraic integer and assume that it is {\it expanding}, i.e., its all conjugates lie outside the unit circle. We show several results of the form $\mathbb{Z}[\alpha]=\mathcal{B}[\alpha]$ with a certain finite set $\mathcal{B}\subset\mathbb{Z}$. This property is called {\it height reducing property}, which attracted special interest in the self-affine tilings. Especially we show that if $\alpha$ is quadratic or cubic trinomial, then one can choose $\mathcal{B}= \left\{0,\,\pm 1,\,\ldots,\,\pm \left(|N(\alpha)|-1\right)\right\}$, where $N(\alpha)$ stands for the absolute norm of $\\alpha$ over $\mathbb{Q}$.

Article information

Funct. Approx. Comment. Math., Volume 47, Number 1 (2012), 105-119.

First available in Project Euclid: 25 September 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R11: Quadratic extensions
Secondary: 11R04: Algebraic numbers; rings of algebraic integers

expanding algebraic integer height reducing property canonical number system.


Akiyama, Shigeki; Drungilas, Paulius; Jankauskas, Jonas. Height reducing problem on algebraic integers. Funct. Approx. Comment. Math. 47 (2012), no. 1, 105--119. doi:10.7169/facm/2012.47.1.9.

Export citation


  • S. Akiyama, Finiteness and periodicity of beta expansions - number theoretical and dynamical open problems, Actes des rencontres du CIRM, 1 no. 1: Numération : mathématiques et informatique (2009), p. 3–9.
  • S. Akiyama, H. Brunotte, A. Pethő, Jörg Thuswaldner, Generalized radix representations and dynamical systems II, Acta Arith. 121 (2006), no. 1, 21–61.
  • S. Akiyama and K. Scheicher, From number systems to shift radix systems, Nihonkai Math. J. 1309:thm (2005), no. 2, 95–106.
  • S. Akiyama and N. Gjini, Connectedness of number theoretic tilings, Discret. Math. Theoret. Comput. Sci. 7 (2005), no. 1, 269–312.
  • J. Berstel, Transductions and context-free languages, Taubner, 1979.
  • H. Brunotte, Characterization of CNS trinomials, Acta Sci. Math. (Szeged) 68 (2002), 673–679.
  • H. Brunotte, A. Huszti and A. Pethő, Bases of canonical number systems in quartic algebraic number fields, J. Théor. des Nombres de Bordeaux 18 (2006), 537–557.
  • S. Eilenberg, Automata, Languages and Machines. Vol A, Academic Press, New York, 1974.
  • C. Frougny and W. Steiner, Minimal weight expansions in Pisot bases, J. Math. Cryptol. 2 (2008), no. 4, 365–392.
  • I. Gargantini, A generalization of the Schur-Cohn criterion, Proceedings of the 9-th Manitoba Conference of Numerical Mathematics and Computing, 213–217, Congress. Numer. XXVII, Utilitas Math., Winnipeg, Man. 1980.
  • W.J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. and Appl. 83 (1981), 264–274.
  • K. Gröchenig and A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl. 1 (1994), no. 2, 131–170.
  • I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980), 99–107.
  • I. Kátai and B. Kovács, Canonical number systems in Imaginary Quadratic Fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 159–164.
  • I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged) 37 (1975), 255–260.
  • I. Kirat and K.-S. Lau, On the connectedness of self-affine tiles, J. London Math. Soc. 62 (2000), 291–304.
  • I. Kirat, K.-S. Lau and H. Rao, Expanding polynomials and Connectedness of self-affine tiles, Discrete Comput. Geom. 31 (2004), 275–286.
  • B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 405–407.
  • J.C. Lagarias and Y. Wang, Integral self-affine tiles in $\ACOIR^n$ I. Standard and nonstandard digit sets, J. London Math. Soc. 54 (1996), no. 2, 161–179.
  • J.C. Lagarias and Y. Wang, Self-affine tiles in $\ACOIR^n$, Adv. Math. 121 (1996), 21–49.
  • J.C. Lagarias and Y. Wang, Integral self-affine tiles in $\ACOIR^n$ II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), no. 1, 83–102.
  • S. Lang, Algebra. 3rd revised ed., Graduate Texts in Mathematics. 211. New York, NY: Springer. xv, 914 p., 2002.
  • M. Marden, Geometry of polynomials, Second edition. Math. Surveys, No. 3, Providence, AMS, 1966.
  • W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 3rd ed., Springer, Berlin, 2004.
  • K. Scheicher and J. Thuswaldner, Canonical number systems, counting automata and fractals, Math. Proc. Cambridge Philos. Soc. 133 (2002), 163–182.