Functiones et Approximatio Commentarii Mathematici

On the critical values of $L$-functions of base change for Hilbert modular forms II

Cristian Virdol

Full-text: Open access

Abstract

In this paper we generalize some results, obtained by Shimura, Yoshida and the author, on critical values of $L$-functions of $l$-adic representations attached to Hilbert modular forms twisted by finite order characters, to the critical values of $L$-functions of arbitrary base change to totally real number fields of $l$-adic representations attached to Hilbert modular forms twisted by some finite-dimensional representations.

Article information

Source
Funct. Approx. Comment. Math., Volume 47, Number 1 (2012), 7-13.

Dates
First available in Project Euclid: 25 September 2012

Permanent link to this document
https://projecteuclid.org/euclid.facm/1348578273

Digital Object Identifier
doi:10.7169/facm/2012.47.1.1

Mathematical Reviews number (MathSciNet)
MR2987107

Zentralblatt MATH identifier
1320.11043

Subjects
Primary: 11F41: Automorphic forms on GL(2); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces [See also 14J20]
Secondary: 11F80: Galois representations 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27] 11R80: Totally real fields [See also 12J15]

Keywords
L-functions Base change special values Hilbert modular forms

Citation

Virdol, Cristian. On the critical values of $L$-functions of base change for Hilbert modular forms II. Funct. Approx. Comment. Math. 47 (2012), no. 1, 7--13. doi:10.7169/facm/2012.47.1.1. https://projecteuclid.org/euclid.facm/1348578273


Export citation

References

  • T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor, Potential automorphy and change of weight, preprint.
  • C.W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Wiley, New York, 1981.
  • G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637–679.
  • R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), no. 2, 265–280.
  • C. Virdol, On the critical values of L-functions of base change for Hilbert forms, Amer. J. Math. 132 (2010), no. 4, 1105–1111.
  • C. Virdol, On the Birch and Swinnerton-Dyer conjecture for abelian varieties attached to Hilbert modular forms, J. Number Theory 131 (2011), no. 4, 681–684.
  • C. Virdol, Non-solvable base change for Hilbert modular forms and zeta functions of twisted quaternionic Shimura varieties, Ann. Fac. Sci. Toulouse Math. 19 (2010), no. 3-4, 831–848.
  • C. Virdol, On the critical values of L-functions of tensor product of base change for Hilbert modular forms, Journal of Mathematics of Kyoto University 49 (2009), no. 2, 347–357.
  • H. Yoshida, On a conjecture of Shimura concerning periods of Hilbert modular forms, Amer. J. Math. 117 (1995), no. 4, 1019–1038.