Functiones et Approximatio Commentarii Mathematici

Some arithmetic identities involving divisor functions

Şaban Alaca, Faruk Uygul, and Kenneth S. Williams

Full-text: Open access

Abstract

For a positive integer $n$, let $\sigma(n):= \sum_{d \in \mathb{N}, d|n} d$. The explicit evaluation of such arithmetic sums as $\sum_{(a,b,c) \in \ABIFnn^3, a+2b+4c=n} \sigma(a)\sigma(b) \sigma(c)$ and $\sum_{(a,b) \in \ABIFnn^2, a+2b=n} a \sigma(a)\sigma(b)$ is carried out for all positive integers $n$.

Article information

Source
Funct. Approx. Comment. Math., Volume 46, Number 2 (2012), 261-271.

Dates
First available in Project Euclid: 25 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.facm/1340628406

Digital Object Identifier
doi:10.7169/facm/2012.46.2.9

Mathematical Reviews number (MathSciNet)
MR2931670

Zentralblatt MATH identifier
1318.11001

Subjects
Primary: 11A25: Arithmetic functions; related numbers; inversion formulas
Secondary: 11F27: Theta series; Weil representation; theta correspondences

Keywords
sum of divisors function Eisenstein series

Citation

Alaca, Şaban; Uygul, Faruk; Williams, Kenneth S. Some arithmetic identities involving divisor functions. Funct. Approx. Comment. Math. 46 (2012), no. 2, 261--271. doi:10.7169/facm/2012.46.2.9. https://projecteuclid.org/euclid.facm/1340628406


Export citation

References

  • B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, Rhode Island, 2006.
  • N. Cheng and K. S. Williams, Evaluation of some convolution sums involving the sum of divisor functions, Yokohama Math. J. 52 (2005), 39–57.
  • {J. G. Huard, Z. M. Ou, B. K. Spearman and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number Theory for the Millenium II, edited by M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Philipp, A K Peters, Natick, Massachusetts, USA, 2002, pp. 229–274.
  • D. B. Lahiri, On Ramanujan's function $\tau(n)$ and the divisor function $\sigma_k(n)$-I, Bull. Calcutta Math. Soc. 38 (1946), 193–206.
  • S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159–184.
  • S. Ramanujan, Collected Papers, AMS Chelsea Publishing, Providence, Rhode Island, USA, 2000. }