Functiones et Approximatio Commentarii Mathematici

The absolute Galois group of subfields of the field of totally $\boldsymbol{S}$-adic numbers

Dan Haran, Moshe Jarden, and Florian Pop

Full-text: Open access

Abstract

For a finite set $S$ of local primes of a countable Hilbertian field $K$ and for $\sigma_1,\ldots,\sigma_e\in\Gal(K)$ we denote the field of totally $S$-adic numbers by $\K_{tot,S}$, the fixed field of $\sigma_1,\ldots,\sigma_e$ in $\K_{tot,S}$ by $\K_{tot,S}({\mathbf \sigma})$, and the maximal Galois extension of $K$ in $\KtotS({\mathbf \sigma})$ by $\KtotS[{\mathbf \sigma}]$. We prove that for almost all ${\mathbf \sigma}\in\Gal(K)^e$ the absolute Galois group of $\K_{tot,S}[{\mathbf \sigma}]$ is isomorphic to the free product of $\hat{F}_\omega$ and a free product of local factors over $S$.

Article information

Source
Funct. Approx. Comment. Math., Volume 46, Number 2 (2012), 205-223.

Dates
First available in Project Euclid: 25 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.facm/1340628403

Digital Object Identifier
doi:10.7169/facm/2012.46.2.6

Mathematical Reviews number (MathSciNet)
MR2931667

Zentralblatt MATH identifier
1318.12001

Subjects
Primary: 12E30: Field arithmetic

Keywords
Hilbertian field local primes totally $S$-adic numbers Haar measure absolute Galois group free product

Citation

Haran, Dan; Jarden, Moshe; Pop, Florian. The absolute Galois group of subfields of the field of totally $\boldsymbol{S}$-adic numbers. Funct. Approx. Comment. Math. 46 (2012), no. 2, 205--223. doi:10.7169/facm/2012.46.2.6. https://projecteuclid.org/euclid.facm/1340628403


Export citation

References

  • J. Ax, Solving diophantine problems modulo every prime, Annals of Mathematics 85 (1967), 161–183.
  • I. Efrat, Valuations, Orderings, and Milnor $K$-Theory, Mathematical surveys and monographs 124, American Mathematical Society, Providence, 2006.
  • A. Fehm, Decidability of large fields of algebraic numbers, Ph.D Thesis, Tel Aviv University, 2010.
  • M. D. Fried, D. Haran, and H. Völklein, The absolute Galois group of the totally real numbers, Comptes Rendus de l'Académie des Sciences 317 (1993), 995–999.
  • M. D. Fried and M. Jarden, Field Arithmetic, Third Edition, revised by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2008.
  • W.-D. Geyer, Galois groups of intersections of local fields, Israel Journal of Mathematics 30 (1978), 382–396.
  • W.-D. Geyer and M. Jarden, PSC Galois extensions of Hilbertian fields, Mathematische Nachrichten 236 (2002), 119–160.
  • D. Haran, On closed subgroups of free products of profinite groups, Proceedings of the London Mathematical Society 55 (1987), 266–298.
  • D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed algebraic field, Pacific Journal of Mathematics 123 (1986), 55–69.
  • D. Haran and M. Jarden, Regular lifting of covers over ample fields, Albanian Journal of Mathematics 1 (2007), 215–224.
  • D. Haran, M. Jarden, and F. Pop, P-Adically projective groups as absolute Galois groups, International Mathematics Research Notices 32 (2005), 1957–1995.
  • D. Haran, M. Jarden, and F. Pop, Projective group structures as absolute Galois structures with block approximation, Memoirs of the AMS 189 (2007), 1–56.
  • D. Haran, M. Jarden, and F. Pop, The absolute Galois group of the field of totally $S$-adic numbers, Nagoya Mathematical Journal 194 (2009), 91–147.
  • D. Harbater, Patching and Galois theory, in "Galois Groups and Fundamental Groups" (L. Schneps, ed.), MSRI Publications series 41, Cambridge University Press, 2003, pp. 313–424.
  • B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin, 1967.
  • M. Jarden, Intersection of local algebraic extensions of a Hilbertian field (A. Barlotti et al., eds), NATO ASI Series C 333, 343–405, Kluwer, Dordrecht, 1991.
  • M. Jarden, Large normal extensions of Hilbertian fields, Mathematische Zeitschrift 224 (1997), 555–565.
  • S. Lang, Algebra, Third Edition, Eddison-Wesley, Reading, 1993.
  • O.V. Melnikov, Subgroups and homology of free products of profinite groups, Mathematics USSR Izvestija 34 (1990), 97–119.
  • L. Moret-Bailly, Constructions de revêtements de courbe pointées, Journal of Algebra 240 (2001), 505–534.
  • J. Neukrich, A. Schmidt, and K. Winberg, Cohomology of Number Fields, Grundlehren der mathematischen Wissenschaften 323, Springer-Verlag, Heidelberg, 2000.
  • F. Pop, Embedding problems over large fields, Annals of Mathematics 144 (1996), 1–34.
  • L. Ribes, Introduction to Profinite Groups and Galois Cohomology, Queen's papers in Pure and Applied Mathematics 24, Queen's University, Kingston, 1970.
  • L. Ribes and P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik (3) 40, Springer, Berlin, 2000.