Functiones et Approximatio Commentarii Mathematici

On Weyl sums for smaller exponents

Kent D. Boklan and Trevor D. Wooley

Full-text: Open access


We present a hybrid approach to bounding exponential sums over $k$th powers via Vinogradov's mean value theorem, and derive estimates of utility for exponents $k$ of intermediate size.

Article information

Funct. Approx. Comment. Math., Volume 46, Number 1 (2012), 91-107.

First available in Project Euclid: 30 March 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11L15: Weyl sums
Secondary: 11L07: Estimates on exponential sums 11P05: Waring's problem and variants 11P55: Applications of the Hardy-Littlewood method [See also 11D85]

Exponential sums Waring's problem Hardy-Littlewood method


Boklan, Kent D.; Wooley, Trevor D. On Weyl sums for smaller exponents. Funct. Approx. Comment. Math. 46 (2012), no. 1, 91--107. doi:10.7169/facm/2012.46.1.7.

Export citation


  • K. D. Boklan, The asymptotic formula in Waring's problem, Mathematika 41 (1994), 329–347.
  • E. Bombieri, On Vinogradov's mean value theorem and Weyl sums, in: Automorphic Forms and Analytic Number Theory, Univ. de Montréal, Montréal, 1990, pp. 7–24.
  • T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), 653–662.
  • K. B. Ford, New estimates for mean values of Weyl sums, Internat. Math. Res. Notices (1995), no. 3, 155–171.
  • D. R. Heath-Brown, Weyl's inequality, Hua's inequality, and Waring's problem, J. London Math. Soc. (2) 38 (1988), 216–230.
  • N. M. Korobov, Weyl's estimates of sums and the distribution of primes, Dokl. Akad. Nauk SSSR 123 (1958), 28–31.
  • S. T. Parsell, On the Bombieri-Korobov estimate for Weyl sums, Acta Arith. 138 (2009), 363–372.
  • R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 122–170.
  • R. C. Vaughan, On Waring's problem for smaller exponents, II, Mathematika 33 (1986), 6–22.
  • R. C. Vaughan, The Hardy-Littlewood method, 2nd edition, Cambridge University Press, Cambridge, 1997.
  • R. C. Vaughan and T. D. Wooley, A special case of Vinogradov's mean value theorem, Acta Arith. 79 (1997), 193–204.
  • I. M. Vinogradov, New estimates for Weyl sums, Dokl. Akad. Nauk SSSR 8 (1935), 195–198.
  • H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.
  • T. D. Wooley, On Vinogradov's mean value theorem, Mathematika 39 (1992), 379–399; Corrigendum: “On Vinogradov's mean value theorem”, Mathematika 40 (1993), 152.
  • T. D. Wooley, Quasi-diagonal behaviour in certain mean value theorems of additive number theory, J. Amer. Math. Soc. 7 (1994), 221–245.
  • T. D. Wooley, New estimates for Weyl sums, Quart. J. Math. Oxford (2) 46 (1995), 119–127.