Functiones et Approximatio Commentarii Mathematici

Hermite's formulas for $q$-analogues of Hurwitz zeta functions

Yoshinobu Tomita

Full-text: Open access

Abstract

We treat Hermite's formulas for $q$-analogues of the Hurwitz zeta function. As their application, we study the classical limit of modified $q$-analogues of the Hurwitz zeta function. We also treat $q$-analogues of the Milnor multiple gamma function.

Article information

Source
Funct. Approx. Comment. Math., Volume 45, Number 2 (2011), 289-301.

Dates
First available in Project Euclid: 12 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.facm/1323705819

Digital Object Identifier
doi:10.7169/facm/1323705819

Mathematical Reviews number (MathSciNet)
MR2895160

Zentralblatt MATH identifier
1268.11128

Subjects
Primary: 11M35: Hurwitz and Lerch zeta functions
Secondary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}

Keywords
Riemann zeta function Hurwitz zeta function multiple gamma function classical limit $q$-series

Citation

Tomita, Yoshinobu. Hermite's formulas for $q$-analogues of Hurwitz zeta functions. Funct. Approx. Comment. Math. 45 (2011), no. 2, 289--301. doi:10.7169/facm/1323705819. https://projecteuclid.org/euclid.facm/1323705819


Export citation

References

  • K. A. Broughan, Vanishing of the integral of the Hurwitz zeta function, Bull. Austral. Math. Soc. 65 (2002), no. 1, 121–127.
  • M. Kaneko, N. Kurokawa and M. Wakayama, A variation of Euler's approach to values of the Riemann zeta function, Kyushu J. Math. 57 (2003), no. 1, 175–192.
  • K. Kawagoe, M. Wakayama and Y. Yamasaki, $q$-analogues of the Riemann zeta, the Dirichlet $L$-functions, and a crystal zeta function, Forum Math. 20 (2008), no. 1, 1–26.
  • N. Kurokawa, H. Ochiai and M. Wakayama, Milnor's multiple gamma functions, J. Ramanujan Math. Soc 21 (2006), no. 2, 153–167.
  • N. Kurokawa and M. Wakayama, Period deformations and Raabe's formulas for generalized gamma and sine functions, Kyushu J. Math. 62 (2008), no. 1, 171–187.
  • N. Kurokawa and M. Wakayama, On $q$-analogues of the Euler constant and Lerch's limit formula, Proc. Amer. Math. Soc. 132 (2004), no. 4, 935–943.
  • N. Kurokawa and M. Wakayama, Gamma and sine functions for Lie groups and period integrals, Indagationes Mathematicae 16 (2005), no. 3-4, 585–607.
  • N. N. Lebedev, Special functions and their applications, Dover Publications Inc., New York, 1972.
  • M. Lerch, Dalši studie v oboru Malmsténovsk\`ych r\v ad, Rozpravy Ceské Akad 3 (1894), no. 28, 1–61.
  • G. A. A. Plana, Mem. R. Accad. Torino XXV, no. 9, 403–418, 1820.
  • Y. Tomita, On $q$-analogues of multiple gamma functions and multiple sine functions, preprint, 2009.
  • H. Tsumura, On modification of the $q$-$L$-series and its applications, Nagoya Math. J. 164 (2001), 185–197.
  • K. Ueno and M. Nishizawa, Quantum groups and zeta-functions, In Quantum groups (Karpacz, 1994), 115–126. PWN, Warsaw, 1995.
  • M. Wakayama and Y. Yamasaki, Integral representations of $q$-analogues of the Hurwitz zeta function, Monatshefte für Mathematik 149 (2006), no. 2, 141–154.
  • E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996.