## Functiones et Approximatio Commentarii Mathematici

### Fleck's congruence, associated magic squares and a zeta identity

Matthew C. Lettington

#### Abstract

Let the \emph{Fleck numbers}, $C_n(t,q)$, be defined such that $C_n(t,q)=\sum_{k\equiv q (mod n)}(-1)^k\binom{t}{k}.$ For prime $p$, Fleck obtained the result $C_p(t,q)\equiv 0 (mod p^{{\left \lfloor (t-1)/(p-1)\right \rfloor}}} )$, where $\lfloor.\rfloor$ denotes the usual floor function. This congruence was extended 64 years later by Weisman, in 1977, to include the case $n=p^\alpha$. In this paper we show that the Fleck numbers occur naturally when one considers a symmetric $n\times n$ matrix, $M$, and its inverse under matrix multiplication. More specifically, we take $M$ to be a symmetrically constructed $n\times n$ associated magic square of odd order, and then consider the reduced coefficients of the linear expansions of the entries of $M^t$ with $t\in \mathbb{Z}$. We also show that for any odd integer, $n=2m+1$, $n\geq 3$, there exist geometric polynomials in $m$ that are linked to the Fleck numbers via matrix algebra and $p$-adic interaction. These polynomials generate numbers that obey a reciprocal type of congruence to the one discovered by Fleck. As a by-product of our investigations we observe a new identity between values of the Zeta functions at even integers. Namely $\zeta{(2j)}=(-1)^{j+1}\left (\frac{j\pi^{2j}}{(2j+1)!}+\sum_{k=1}^{j-1}\frac{(-1)^k\pi^{2j-2k}}{(2j-2k+1)!}\zeta{(2k)}\right ).$ We conclude with examples of combinatorial congruences, Vandermonde type determinants and Number Walls that further highlight the symmetric relations that exist between the Fleck numbers and the geometric polynomials.

#### Article information

Source
Funct. Approx. Comment. Math., Volume 45, Number 2 (2011), 165-205.

Dates
First available in Project Euclid: 12 December 2011

https://projecteuclid.org/euclid.facm/1323705813

Digital Object Identifier
doi:10.7169/facm/1323705813

Mathematical Reviews number (MathSciNet)
MR2895154

Zentralblatt MATH identifier
1246.11043

#### Citation

Lettington, Matthew C. Fleck's congruence, associated magic squares and a zeta identity. Funct. Approx. Comment. Math. 45 (2011), no. 2, 165--205. doi:10.7169/facm/1323705813. https://projecteuclid.org/euclid.facm/1323705813

#### References

• W. S. Andrews, Magic Squares and Cubes, Dover, 1960.
• G. Averkov and M. Henk, Respresenting simple $d$-dimensional polytopes by $d$ polynomials, arXiv:0709.2099v1, 2007.
• R. Bacher, Determinants of matrices related to the Pascal triangle, J. Théorie Nombres Bordeaux 14(1) (2002), 19–41.
• M. Beck, and S. Robins, Computing the Continuous Discretely, Springer, Heidelberg, 2006.
• J. M. Borwein et al, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics 121 (2000), 247–296.
• H. Q. Cao and H. Pan, Congruences on Stirling numbers and Eulerian numbers, arXiv:math/0608564v2, 2006.
• J. H. Conway and R. K. Guy, The Book of Numbers,Copernicus, 1995.
• D. M. Davis and Z. W. Sun, Combinatorial congruences modulo prime powers, Trans. Amer. Math. Soc. 359(11) (2007), 5525–5553.
• L. E. Dickson, History of the Theory of Numbers, Vol I, AMS, Chelsea Publ., 1999.
• K. Dilcher and K. B. Stolarsky, A Pascal type triangle characterizing twin primes, Amer. Math. Monthly 112(8) (2005), 673–681.
• A. V. Den Essen, Magic squares and linear algebra, Amer. Math. Monthly 97(1) (1990), 60–62.
• R. L. Graham, D. E. Knuth and O. Patshnik, Concrete Mathematics, Addison Wesley, 1989.
• J. Guyker, Magic squares with magic inverses, International Journal of Mathematical Education in Science and Technology 38(5) (2007), 683–688.
• M. N. Huxley, The integer points in a plane curve, Funct. Approx. Comment. Math 37(1) (2007), 213–231.
• Integer-sequences, http://www.research.att.com/\raise.17ex$\scriptstyle\sim$njas/sequences/index.html
• M. Somos, http://grail.cba.csuohio.edu/\raise.17ex$\scriptstyle\sim$somos/nwic.htm
• R. S. Underwood, An expression for the summation $\sum_m=1^n m^p$, Amer. Math. Monthly 35(8) (1928), 424–428.