Functiones et Approximatio Commentarii Mathematici

On a three-space property for Lindelöf $\Sigma$-spaces, (WCG)-spaces and the Sobczyk property

Jesús Ferrer, Jerzy Kąkol, Manuel López Pellicer, and Marek Wójtowicz

Full-text: Open access

Abstract

Corson's example shows that there exists a Banach space $E$ which is not weakly normal but $E$ contains a closed subspace isomorphic to the Banach space $C[0,1]$ and such that the quotient space $E/C[0,1]$ is isomorphic to the weakly compactly generated Banach space $c_{0}[0,1]$. This applies to show the following two results: (i) The Lindel\"of property is not a three-space property. (ii) The Lindel\"of $\Sigma$-property is not a three-space property. In this note using the lifting property developed by Susanne Dierolf we present a very simple argument providing also (ii), see Theorem 1. This argument used in the proof applies also to show that under Continuum Hypothesis every infinite-dimensional topological vector space $E$ which contains a dense hyperplane admits a stronger vector topology $\upsilon$ with the same topological dual and such that $(E,\upsilon)$ contains a dense non-Baire hyperplane. This partially answers a question of Saxon concerning Arias de Reyna-Valdivia-Saxon theorem. A Banach space $E$ has the Sobczyk Property if it contains an isomorphic copy of $c_0$ and every such a copy is complemented in $E$. The classical Sobczyk's theorem says that every separable Banach space has this property. We give an example of a $C(K)$-space $E$ and its subspace $Y$ isometric to $c_0$ such that $E/Y$ is isomorphic to $c_0(\Gamma)$, with $card(\Gamma )=2^{\aleph_0}$, yet $Y$ is uncomplemented in $E$. This complements Corson's example and shows that the Sobczyk Property (as well as the (WCG)-property, and the Separable Complementation Property) is not a~three-space property. In the last part we recall some facts (partially with a simpler presentation) concerning K-analytic, Lindelöf $\Sigma$ and analytic locally convex spaces. Additionally, a few remarks concerning weakly K-analytic spaces are included.

Article information

Source
Funct. Approx. Comment. Math., Volume 44, Number 2 (2011), 289-306.

Dates
First available in Project Euclid: 22 June 2011

Permanent link to this document
https://projecteuclid.org/euclid.facm/1308749133

Digital Object Identifier
doi:10.7169/facm/1308749133

Mathematical Reviews number (MathSciNet)
MR2841188

Zentralblatt MATH identifier
1234.46018

Subjects
Primary: 46A30: Open mapping and closed graph theorems; completeness (including $B$-, $B_r$-completeness) 46A03: General theory of locally convex spaces

Keywords
Lindelöf $\Sigma$-spaces WCG-spaces Banach spaces

Citation

Ferrer, Jesús; Kąkol, Jerzy; Pellicer, Manuel López; Wójtowicz, Marek. On a three-space property for Lindelöf $\Sigma$-spaces, (WCG)-spaces and the Sobczyk property. Funct. Approx. Comment. Math. 44 (2011), no. 2, 289--306. doi:10.7169/facm/1308749133. https://projecteuclid.org/euclid.facm/1308749133


Export citation

References

  • A. V. Arkhangel'skii, Topological function spaces, Math. and its Applications 78, Kluwer Academic Publishers, Dordrecht Boston London, 1992.
  • J. Batt and W. Hiermeyer, On compactness in $L_p(\mu,X)$ in the weak topology and in the topology $\sigma(L_p(\mu,X),L_p(\mu,X'))$, Math. Z. 182 (1983), 409–423.
  • Cz. Bessaga and A. Pelczyński, Selected topics in infinite-dimensional topology, Monografie Mat. PWN 58 (1978).
  • B. Cascales, On $K$-analytic locally convex spaces, Arch. Math. 49 (1987), 232–244.
  • B. Cascales and J. Orihuela, On Compactness in Locally Convex Spaces, Math. Z. 195 (1987), 365–381.
  • B. Cascales and J. Orihuela, On pointwise and weak compactness in spaces of continuous functions, Bull. Soc. Math. Belg. 40 (1988), 331–352.
  • B. Cascales, J. K\k akol and S. A. Saxon, Weight of precompact subsets and tightness, J. Math. Anal. Appl. 269 (2002), 500–518.
  • B. Cascales, J. K\k akol and S. A. Saxon, Metrizability vs. Fréchet-Urysohn property, Proc. Amer. Math. Soc. 131 (2003), 3623–3631.
  • J. M. F. Castillo and M. Gonzáles, Three-space Problems in Banach Spaces Theory, Springer 1997.
  • H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1–15.
  • S. Dierolf, A note on the lifting of linear and locally convex topologies on a quotient space, Collect. Math. 31 (1980), 193–98.
  • S. Dierolf and U. Schwanengel, Examples of locally compact non-compact minimal topological groups, Pac. J. Math., 82 (1979), 349–355.
  • J. Diestel, $L^1_X$ is weakly compactly generated if $X$ is, Proc. Amer. Math. Soc. 48 (1975), 508–510.
  • L. Drewnowski, Resolutions of topological linear spaces and continuity of linear maps, J. Math. Anal. Appl. 335 (2007), 1177–1195.
  • J. C. Ferrando, J. K\k akol, M. López Pellicer and S. A. Saxon, Quasi-Suslin weak duals, J. Math. Anal. Appl. 339 (2008), 1253–1263.
  • J. Ferrer, On the Controlled Separable Projection Property for some $C(K)$ spaces, Acta Math. Hungar. 124 (2009), 145–154.
  • J. Ferrer and M. Wójtowicz, Quasi-quotients of Banach spaces with the Controlled Separable Projection Property for Banach Spaces and the Separable Quotient Problem, in preparation.
  • K. Floret, Weakly compact sets, Lecture Notes in Math. 801, Springer, Berlin 1980.
  • L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.
  • A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173.
  • H. Hrušák, P. J. Szeptycki and Á. Tamariz-Mascarúa, Spaces of continuous functions defined on Mrówka spaces, Toplogy Appl. 148 (2005), 239–252.
  • J. K\k akol, S. Saxon and A. T. Todd, Pseudocompact spaces $X$ and $df$-spaces $(C_c(X)$, Proc. Amer. Math. Soc. 132 (2004), 1703–1712.
  • J. Kąkol and M. López-Pellicer, Compact coverings for Baire locally convex spaces, J. Math. Anal. Appl. 332 (2007), 965–974.
  • J. K\k akol and M. Lopez Pellicer, A characterization of Lindelöf $\Sigma$-spaces $\upsilon X$, submitted.
  • J. K\k akol and S. Saxon, The Semi-Baire-like Three-Space Problems, Advanced in Applied Math. 25 (2000), 57–64.
  • J. Kąkol and M. Lopez Pellicer, W. Śliwa, Weakly K-analytic spaces and the three-space property for analyticity, J. Math. Anal. Appl. 362 (2010), 90–99.
  • R. Kirk, A note on the Mackey topology for $(C^b(X)^*,C^b(X))$, Pacific. J. Math. 45 (1973), 543–554.
  • P. Koszmider, On decompositions of Banach spaces of continuous functions on Mrówka's spaces, Proc. Am. Math. Soc., 133 (2005), 2137–2146.
  • W. Kubiś, O. Okunev and P.J. Szeptycki, On some classes of Lindelöf $\Sigma $-spaces, Topol. Appl. 153 (2006), 2574–2590.
  • S.S. Khurana, Weakly compactly generated Fréchet spaces, Intern. J. Math. S. Math. Sci. 2 (1979), 721–724.
  • I. Labuda and Z. Lipecki, On subseries convergent series and m-quasi-bases in topological linear spaces, Manuscripta Math. 38 (1982), 87–98.
  • E. Michael, $\aleph_0$-spaces, J. Math. Mech., 15 (1966), 983–1002.
  • E. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415–416.
  • S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), 105–106.
  • S. Mrówka, Some set-theoretic constructions in topolgy, Fund. Math. 94 (1977), 83–92.
  • K. Nagami, $\Sigma $-spaces, Fundam. Math. 61 (1969), 169–192.
  • J. Orihuela, Pointwise compactness in spaces of continuous functions, J. London Math. Soc. 36 (1987), 143–152.
  • W. Patterson, Complemented $c_0$-subspaces of a non-separable $C(K)$-space, Canad. Math. Bull. 36 (1993), 351–357.
  • P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, Notas de Mat., North-Holland Amsterdam 131 (1987).
  • W. Roelcke and S. Dierolf On the three space property for topological vector spaces, Collectanea Math. 32 (1981), 3–25.
  • W. Roelcke and S. Dierolf Uniform structures on topological groups and their quotients McGraw-Hill Publ. Co., New York (1981).
  • S.A. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann. 197 (1972), 87–106.
  • S.A. Saxon, Non-Baire hyperplanes in non-separable Baire spaces, Jour. Math. Anal. Appl. 168 (1992), 460–468.
  • G. Schlüchtermann and R.F. Wheller, On strongly WCG Banach spaces, Math. Z. 199 (1988), 387–398.
  • G. Schlüchtermann and R.F. Wheller, The Mackey dual of a Banach space, Note di Mat. 11 (1991), 273–287.
  • Z. Semadeni, Banach Spaces of Continuous Functions, Polish Scientific Publishers, Warszawa 1971.
  • M. Talagrand, Sur une conjecture de H. H. Corson, Bull. Soc. Math. 99 (1975), 211–212.
  • M. Talagrand, Espaces de Banach faiblement $K$% -analytiques, Ann. of Math. 110 (1979), 407–438.
  • M. Talagrand, Weak Cauchy sequences in $L^1(E)$, Am. J. Math. 106 (1984), 703–724.
  • V.V. Tkachuk, Lindelöf $\Sigma$-spaces: an omnipresent class, preprint.
  • M. Valdivia, Topics in Locally Convex Spaces, North-Holland, Amsterdam, 1982.
  • M. Valdivia, Subespacios de primera categoria eb espacios vectoriales topológicos de Baire, Collect. Math. 34 (1983), 287–296.
  • W. Zizler, Nonseparable Banach Spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 2, Edited by W. B. Johnson and J. Lindenstrauss, Elsevier 2003.