## Functiones et Approximatio Commentarii Mathematici

### Real analytic parameter dependence of solutions of differential equations over Roumieu classes

Paweł Domański

#### Abstract

We consider the problem of real analytic parameter dependence of solutions of the linear partial differential equation $P(D)u=f$, i.e., the question if for every family $(f_\lambda)\subseteq \mathscr_{\{\omega\}}(\Omega)$ of ultradifferentiable functions of Roumieu type (in particular, of real analytic functions or of functions from Gevrey classes) depending in a real analytic way on $\lambda\in U$, $U$ a real analytic manifold, there is a family of solutions $(u_\lambda)\subseteq \mathscr_{\{\omega\}}(\Omega)$ also depending analytically on $\lambda$ such that $$P(D)u_\lambda=f_\lambda \text{for every \lambda\in U},$$ where $\Om\subseteq \mathbb{R}^d$ an open set. We solve the problem for many types of differential operators following a similar method as in the earlier paper of the same author for operators acting on spaces of distributions. We show for an operator $P(D)$ on the space of real analytic functions $\mathscr{A}(\Omega)$, $\Omega \subseteq \mathbb{R}^d$ open convex, that it has real analytic parameter dependence if and only if its principal part $P_p(D)$ has a continuous linear right inverse on the space $C^\infty(\Omega)$ (or, equivalently, on $\mathscr{D}'(\Omega)$). In particular, the property does not depend on the set of parameters $U$. Surprisingly, in all solved non-quasianalytic cases, it follows that the solution is positive if and only if $P(D)$ has a linear continuous right inverse.

#### Article information

Source
Funct. Approx. Comment. Math., Volume 44, Number 1 (2011), 79-109.

Dates
First available in Project Euclid: 30 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.facm/1301497748

Digital Object Identifier
doi:10.7169/facm/1301497748

Mathematical Reviews number (MathSciNet)
MR2807900

Zentralblatt MATH identifier
1221.35050

#### Citation

Domański, Paweł. Real analytic parameter dependence of solutions of differential equations over Roumieu classes. Funct. Approx. Comment. Math. 44 (2011), no. 1, 79--109. doi:10.7169/facm/1301497748. https://projecteuclid.org/euclid.facm/1301497748

#### References

• J. Bonet, P. Domański, Real analytic curves in Fréchet spaces and their duals, Mh. Math. 126 (1998), 13–36.
• J. Bonet, P. Domański, Parameter dependence of solutions of partial differential equations in spaces of real analytic functions, Proc. Amer. Math. Soc. 129 (2000), 495–503.
• J. Bonet, P. Domański, Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences, J. Funct. Anal., 230 (2006), 329–381.
• J. Bonet, P. Domański, The structure of spaces of quasianalytic functions of Roumieu type, Arch. Math. 89 (2007), 430–441.
• J. Bonet, P. Domański, The splitting of exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential equations, Advances Math. 217 (2008), 561–585.
• J. Bonet, R. Meise, S. N. Melikhov, A comparison of two different ways to define classes of ultradifferentiable functions, Bull. Belg. Math. Simon Stevin 14 (2007), 425–444.
• R. W. Braun, Surjektivität partieller Differentialoperatoren auf Roumieu-Klassen, Habilitationsschrift, Düsseldorf 1993.
• R. W. Braun, R. Meise, B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 207–237.
• R. W. Braun, R. Meise, B. A. Taylor, Characterization of the linear partial differential equations that admit solution operators on Gevrey classes, J. reine angew. Math. 588 (2005), 169–220.
• R. W. Braun, R. Meise, D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344–370
• F. E. Browder, Analyticity and partial differential equations I, Amer. J. Math. 84 (1962), 660–710
• P. Domański, Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives, in: Orlicz Centenary Volume, Banach Center Publications, 64, Z. Ciesielski, A. Pełczyński and L. Skrzypczak (eds.), Institute of Mathematics, Warszawa 2004, pp. 51–70.
• P. Domański, Real analytic parameter dependence of solutions of differential equations, Rev. Mat. Iberoamericana 26 (2010), 175–238.
• P. Domański, Notes on real analytic functions and classical operators, preprint 2010.
• P. Domański and M. Langenbruch, Vector valued hyperfunctions and boundary values of vector valued harmonic and holomorphic functions, Publ. RIMS Kyoto Univ. 44(4) (2008), 1097–1142.
• P. Domański, D. Vogt, The space of real analytic functions has no basis, Studia Math. 142 (2000), 187–200.
• U. Franken, On the equivalence of holomorphic and plurisubharmonic Phragmén-Lindelöf principles, Michigan Math. J. 42 (1995), no. 1, 163–173.
• L. Frerick, A splitting theorem for nuclear Fréchet spaces, in: Functional Analysis, Proc. of the First International Workshop held at Trier University, S. Dierolf, P. Domański, S. Dineen (eds.), Walter de Gruyter, Berlin 1996, pp. 165–167.
• L. Frerick, J. Wengenroth, A sufficient condition for the vanishing of the derived projective limit functor, Arch. Math., 67 (1996), 296–301.
• L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Inventiones Math. 21 (1973), 151–182.
• L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin 1983.
• H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981.
• M. Klimek, Pluripotential Theory, London Mathematical Society Monographs, New Series, 6, Oxford University Press, New York, 1991.
• H. Komatsu, Ultradistributions I. Structure theorems and characterization, J. Fac. Sci. Univ. Tokyo, Sec. 1 A. Math. 20 (1973), 25–105.
• A. Kriegl, P. W. Michor, The convenient setting for real analytic mappings, Acta Math. 165 (1990), 105–159.
• M. Langenbruch, Continuous linear right inverses for convolution operators in spaces of real analytic functions, Studia Math. 110 (1994), 65–82.
• M. Langenbruch, Surjectivity of partial differential operators on Gevrey classs and extension of regularity, Math. Nachr. 196 (1998), 103–140.
• M. Langenbruch, Characterization of surjective partial differential operators on spaces of real analytic functions, Studia Math. 162 (2004) 53–96.
• M. Langenbruch, Inheritance of surjectivity for partial differential operators on spaces of real analytic functions, J. Math. Anal. Appl. 297 (2004), 696–719.
• A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann. 163 (1966), 62–88.
• R. Meise, Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, Studia Math. 92 (1989), 211–230.
• R. Meise, B. A. Taylor, D. Vogt, Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, Grenoble 40 (1990), 619–655.
• R. Meise, B. A. Taylor, D. Vogt, Equivalence of analytic and plurisubharmonic Phragmén-Lindelöf conditions, Proc. Symposia Pure Math. 52 (1991), part 3, 287–308.
• R. Meise, B. A. Taylor, D. Vogt, Extremal plurisubharmonic functions of linear growth on algebraic varieties, Math. Z. 219 (1995), 515–537.
• R. Meise, B. A. Taylor, D. Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213–242.
• R. Meise, B. A. Taylor, D. Vogt, Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces, Manuscr. Math. 90 (1996), 449–464.
• R. Meise, B. A. Taylor, D. Vogt, $\omega$-Hyperbolicity of linear partial differential operators with constant coefficients, Complex Analysis, Harmonic Analysis and Applications, R. Deville, J. Esterle, V. Petkov, A Sebbar, A Yger, (eds.), Pitman Research Notes, Math. Ser. 347 (1996), 157–182.
• R. Meise, B. A. Taylor, D. Vogt, Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc. 11 (1998), 1–39.
• R. Meise, D. Vogt, Characterization of convolution operators on spaces of $C\sp\infty$-functions admitting a continuous linear right inverse, Math. Ann. 279 (1987), 141–155.
• R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford 1997.
• T. Meyer, Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type, Studia Math. 125 (1997), 101–129.
• V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Nauka, Moscow 1967 (Russian), English transl., Springer, Berlin 1971.
• V. P. Palamodov, Functor of projective limit in the category of topological vector spaces, Mat. Sb. 75 (1968), 567-603 (in Russian); English transl., Math. USSR Sbornik 17 (1972), 289–315.
• V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1) (1971), 3–66 (in Russian); English transl., Russian Math. Surveys 26 (1) (1971), 1–64.
• K. Piszczek, On a property of PLS-spaces inherited by their tensor products, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 155–170.
• L. Rodino, Linear Partial Differential Operators in Gevrey Classes, World Scientific, Singapore 1993.
• T. Rösner, Surjektivität partieller Differentialoperatoren auf quasianalytischen Roumieu-Klassen, Dissertation, Düsseldorf 1997.
• D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. L. Zapata (ed.), Lecture Notes Pure Appl. Math. 83, Marcel Dekker, New York 1983, pp. 405–443.
• D. Vogt, Lectures on projective spectra of DF-spaces, Seminar Lectures, AG Funktionalanalysis, Düsseldorf/Wuppertal 1987.
• D. Vogt, Topics on projective spectra of LB-spaces, in: Advances in the Theory of Fréchet Spaces, T. Terzio\v glu (ed.), Kluwer, Dordrecht 1989, pp. 11–27.
• D. Vogt, Invariants and spaces of zero solutions of linear partial differential operators, Arch. Math. 87 (2006), 163–171.
• D. Vogt, Real analytic zero solutions of linear partial differential operators with constant coefficients, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 577–586.
• J. Wengenroth, Derived Functors in Functional Analysis, Lecture Notes Math. 1810, Springer, Berlin 2003.