Functiones et Approximatio Commentarii Mathematici

Some embeddings and equivalent norms of the $\mathcal{L}_{p,q}^{\lambdas}$ spaces

Douadi Drihem

Full-text: Open access


The aim of this paper is to give some properties for\ the $\mathcal{L}_{p,q}^{\lambda,s}$ spaces, especially concerning embeddings and equivalent norms based of maximal functions and local means.

Article information

Funct. Approx. Comment. Math., Volume 41, Number 1 (2009), 15-40.

First available in Project Euclid: 30 September 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Besov spaces Campanato spaces Triebel-Lizorkin spaces $\mathcal{L}_{p,q}^{\lambda ,s}$ spaces local means maximal functions


Drihem, Douadi. Some embeddings and equivalent norms of the $\mathcal{L}_{p,q}^{\lambdas}$ spaces. Funct. Approx. Comment. Math. 41 (2009), no. 1, 15--40. doi:10.7169/facm/1254330157.

Export citation


  • G. Bourdaud, Analyse fonctionnelle dans l'espace Euclidien, Publ. Math. Univ. Paris. VII, 23, 1987.
  • H.Q. Bui, M. Paluszyński, M. Taibleson, A maximal characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia. Math. 119 (1996), 219--246.
  • H.Q. Bui, M. Paluszyński, M. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case $q<1$, J. Fourier. Anal. Appl. 3, special issue (1997), 837--846.
  • S. Campanato, Proprietà di Hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa. 17 (1963), 175--188.
  • S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola. Norm. Sup. Pisa. 18 (1964), 137--160.
  • A. El Baraka, An embedding theorem for Campanato spaces, Electron. J. Diff. Eqns. 66 (2002), 1--17.
  • A. El Baraka, Littlewood-Paley characterization for Campanato spaces, J. Funct. Spaces. Appl. 4(2) (2006), 193--220.
  • M. Frazier, B. Jawerth, G. Weiss, % Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics 79, Amer. Math. Soc. Providence, RI, 1991.
  • V.S. Rychkov, On a theorem of Bui, Paluszyński, and Taibleson, Proc. Steklov. Inst. Math. 227 (1999), 280--292.
  • W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of $B_p,q^s$ and $F_p,q^s$ type, Z. Anal. Anwendungen. 14(1), (1995), 105--140.
  • E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971.
  • J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989.
  • H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983.
  • H. Triebel, Theory of function spaces II, Birkhäuser, Basel, 1992.
  • H. Triebel, Theory of Function Spaces III, Birkhäuser, Basel, 2006.