Functiones et Approximatio Commentarii Mathematici

Hypergeometric transformations of linear forms in one logarithm

Carlo Viola and Wadim Zudilin

Full-text: Open access

Abstract

We discuss hypergeometric constructions of rational approximations to values of the logarithm function.

Article information

Source
Funct. Approx. Comment. Math., Volume 39, Number 2 (2008), 211-222.

Dates
First available in Project Euclid: 19 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.facm/1229696572

Digital Object Identifier
doi:10.7169/facm/1229696572

Mathematical Reviews number (MathSciNet)
MR2490737

Zentralblatt MATH identifier
1205.33008

Subjects
Primary: 33C05: Classical hypergeometric functions, $_2F_1$
Secondary: 11J82: Measures of irrationality and of transcendence 33C60: Hypergeometric integrals and functions defined by them ($E$, $G$, $H$ and $I$ functions)

Keywords
Rational approximation irrationality measure hypergeometric series hypergeometric integral

Citation

Viola, Carlo; Zudilin, Wadim. Hypergeometric transformations of linear forms in one logarithm. Funct. Approx. Comment. Math. 39 (2008), no. 2, 211--222. doi:10.7169/facm/1229696572. https://projecteuclid.org/euclid.facm/1229696572


Export citation

References

  • W.,N. Bailey, Generalized hypergeometric series, Cambridge Math. Tracts 32 Cambridge Univ. Press, Cambridge (1935); 2nd reprinted edition, Stechert-Hafner, New York--London (1964).
  • E.,A. Rukhadze, A lower bound for the approximation of $\ln2$ by rational numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] (1987), no. 6, 25--29.
  • E.,S. Sal'nikova, Diophantine approximations of $\log2$ and other logarithms, Mat. Zametki [Math. Notes] 83:3 (2008), 428--438.
  • L.,J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge (1966).
  • C. Viola, Hypergeometric functions and irrationality measures, Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge (1997), 353--360.
  • W. Zudilin, Approximations to -, di- and tri- logarithms, J. Comput. Appl. Math. 202:2 (2007), 450--459.