Functiones et Approximatio Commentarii Mathematici

Representation functions of bases for binary linear forms

Melvyn B Nathanson

Full-text: Open access

Abstract

Let $F(x_1,\ldots,x_m) = u_1 x_1 + \cdots + u_mx_m$ be a linear form with nonzero, relatively prime integer coefficients $u_1, \ldots, u_m$. For any set $A$ of integers, let $F(A)=\{F(a_1,\ldots,a_m): a_i \in A for i=1,\ldots,m\}.$ The {\it representation function} associated with the form $F$ is $$ R_{A,F}(n) = \card ( \{ (a_1,\ldots,a_m)\in A^m: F(a_1,\ldots, a_m) = n \} ). $$ The set $A$ is a {\it basis with respect to $F$ for almost all integers} if the set ${\bf Z} \setminus F(A)$ has asymptotic density zero. Equivalently, the representation function of a basis for almost all integers is a function $f:{\bf Z} \rightarrow {\bf N_0}\cup\{\infty\}$ such that $f^{-1}(0)$ has density zero. Given such a function, the inverse problem for bases is to construct a set $A$ whose representation function is $f$. In this paper the inverse problem is solved for binary linear forms. for binary linear forms.

Article information

Source
Funct. Approx. Comment. Math., Volume 37, Number 2 (2007), 341-350.

Dates
First available in Project Euclid: 18 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.facm/1229619658

Digital Object Identifier
doi:10.7169/facm/1229619658

Mathematical Reviews number (MathSciNet)
MR2363831

Zentralblatt MATH identifier
1146.11007

Subjects
Primary: 11B34: Representation functions
Secondary: 11B13: Additive bases, including sumsets [See also 05B10] 11B75: Other combinatorial number theory 11A67: Other representations 11D04: Linear equations 11D72: Equations in many variables [See also 11P55]

Keywords
additive bases representation functions linear forms Erdős-Turán conjecture Sidon sets $B_h[g]$ and $B_F[g]$ sets

Citation

Nathanson, Melvyn B. Representation functions of bases for binary linear forms. Funct. Approx. Comment. Math. 37 (2007), no. 2, 341--350. doi:10.7169/facm/1229619658. https://projecteuclid.org/euclid.facm/1229619658


Export citation

References

  • P. Borwein, S. Choi, and F. Chu, An old conjecture of Erdös-Turán on additive bases, Math. Comp. 75 (2006), no. 253, 475--484 (electronic).
  • Y.-G. Chen, A problem on unique representation bases, European J. Combin. 28 (2007), no. 1, 33--35.
  • J. Cilleruelo and M. B. Nathanson, Dense sets of integers with prescribed representation functions, preprint, 2007.
  • --------, J. Cilleruelo and M. B. Nathanson, Perfect difference sets constructed from Sidon sets, Combinatorica (2007), to appear.
  • G. Grekos, L. Haddad, C. Helou, and J. Pihko, On the Erdős-Turán conjecture, J. Number Theory 102 (2003), no. 2, 339--352.
  • L. Haddad and C. Helou, Bases in some additive groups and the Erdős-Turán conjecture, J. Combin. Theory Ser. A 108 (2004), no. 1, 147--153.
  • J. Lee, Infinitely often dense bases of integers with a prescribed representation function, 2007.
  • T. Łuczak and T. Schoen, A note on unique representation bases for the integers, Funct. Approx. Comment. Math. 32 (2004), 67--70.
  • M. B. Nathanson, Representation functions of sequences in additive number theory, Proc. Amer. Math. Soc. 72 (1978), no. 1, 16--20.
  • M. B. Nathanson, Unique representation bases for the integers, Acta Arith. 108 (2003), no. 1, 1--8.
  • M. B. Nathanson, The inverse problem for representation functions of additive bases, Number theory (New York, 2003), Springer, New York, 2004, pp. 253--262.
  • M. B. Nathanson, Representation functions of additive bases for abelian semigroups, Int. J. Math. Math. Sci. (2004), no. 29-32, 1589--1597.
  • M. B. Nathanson, Every function is the representation function of an additive basis for the integers, Port. Math. (N.S.) 62 (2005), no. 1, 55--72.
  • M. B. Nathanson, Inverse problems for linear forms over finite sets of integers, preprint, 2007.
  • M. B. Nathanson, K. O'Bryant, B. Orosz, I. Ruzsa, and M. Silva, Binary linear forms over finite sets of integers, Acta Arith. (2007), to appear.
  • J. Nešetřil and O. Serra, The Erdős-Turán property for a class of bases, Acta Arith. 115 (2004), no. 3, 245--254.
  • M. Tang and Y.-G. Chen, A basis of $\Bbb Z\sb m$. II, Colloq. Math. 108 (2007), no. 1, 141--145.