Functiones et Approximatio Commentarii Mathematici

On sum-free subsets of the torus group

Vsevolod F. Lev

Full-text: Open access

Abstract

Establishing the structure of dense sum-free subsets of the torus group $\mathbb{R}/\mathbb{Z}$, we find an absolute constant $\alpha_0<1/3$ such that for any sum-free subset $A\subseteq\mathbb{R}/\mathbb{Z}$ with the inner measure $\mu(A)>\alpha_0$ there exists an integer $q\ge 1$ so that $$A \subseteq \bigcup_{j=0}^{q-1}[ \frac{j+\mu(A)}q, \frac{j+1-\mu(A)}q ].$$

Article information

Source
Funct. Approx. Comment. Math., Volume 37, Number 2 (2007), 277-283.

Dates
First available in Project Euclid: 18 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.facm/1229619653

Digital Object Identifier
doi:10.7169/facm/1229619653

Mathematical Reviews number (MathSciNet)
MR2363826

Zentralblatt MATH identifier
1223.11125

Subjects
Primary: 11P70: Inverse problems of additive number theory, including sumsets
Secondary: 11B75: Other combinatorial number theory

Keywords
sum-free sets

Citation

Lev, Vsevolod F. On sum-free subsets of the torus group. Funct. Approx. Comment. Math. 37 (2007), no. 2, 277--283. doi:10.7169/facm/1229619653. https://projecteuclid.org/euclid.facm/1229619653


Export citation

References

  • A. Davydov and L. Tombak, Quasi-perfect linear binary codes with distance $4$ and complete caps in projective geometry, Problemy Peredachi Informatzii 25 (4) (1989), 11--23.
  • J.-M. Deshouillers and G. Freiman, On sum-free sets modulo $p$, Functiones et Approximatio XXXV (2006), 7--15.
  • J.-M. Deshouillers and V.F. Lev, Refined bound for sum-free sets in groups of prime order, submitted.
  • B. Green and I.Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157--188.
  • V.F. Lev, Large sum-free sets in ternary spaces, Journal of Combinatorial Theory, Ser. A 111 (2) (2005), 337--346.
  • V.F. Lev, Large sum-free sets in $\BZ/p\BZ$, Israel Journal of Math. 154 (2006), 221--234.
  • D. Raikov, On the addition of point-sets in the sense of Schnirelmann, Rec. Math. [Mat. Sbornik] 5 (47) (1939), 425--440.