Functiones et Approximatio Commentarii Mathematici

Waring's problem for polynomial biquadrates over a finite field of odd characteristic

Mireille Car and Luis H. Gallardo

Full-text: Open access


Let $q$ be a power of an odd prime $p$ and let ${k}$ be a finite field with $q$ elements. Our main result is: If $q \notin \{3,9,5,13,17,25,29\},$ every polynomial $P\in{k}[t]$ of degree $\geq 269$ is a strict sum of 11 biquadrates. We first decompose $P$ as a strict mixed sum of biquadrates.

Article information

Funct. Approx. Comment. Math., Volume 37, Number 1 (2007), 39-50.

First available in Project Euclid: 18 December 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11T55: Arithmetic theory of polynomial rings over finite fields
Secondary: 11P05: Waring's problem and variants 11D85: Representation problems [See also 11P55]

Waring's problem biquadrates polynomials finite fields odd characteristic


Car, Mireille; Gallardo, Luis H. Waring's problem for polynomial biquadrates over a finite field of odd characteristic. Funct. Approx. Comment. Math. 37 (2007), no. 1, 39--50. doi:10.7169/facm/1229618740.

Export citation


  • R. Balasubramanian, J. M. Deshouillers, F. Dress, Problème de Waring pour les bicarrés. I: schéma de la solution. (Waring's problem for fourth powers. I: sketch of the solution). C. R. Acad. Sci., Paris, Sér. I 303 (1986), 85--88.
  • M. Car and L. Gallardo, Sums of cubes of Polynomials. Acta Arith. 112 No. 1 (2004), 41--50.
  • H. Davenport, On Waring's problem for fourth powers. Annals of Math. (2) 40, (1939), 731--747.
  • J. M. Deshouillers, K. Kawada, T. D. Wooley, On sums of sixteen biquadrates. Mém. Soc. Math. Fr., Nouv. Sér. 100 (2005).
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York, Dover (2005).
  • G. Effinger and D. Hayes, Additive Number Theory of Polynomials Over a Finite Field. Oxford Mathematical Monographs, Clarendon Press, Oxford, (1991).
  • A. Kempner, Bemerkungen zum Waringschen Problem. Math. Ann. 72, (1912), 387--399.
  • H. L. Keng, Introduction to Number Theory. Springer-Verlag, Berlin, Heidelberg, New York, (1982).
  • L. Gallardo, Sums of biquadrates and cubes in $ \bf F_q[t]$. Rocky Mt. J. Math. 33 no. 3, (2003), 865-873.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford at The Clarendon Press, fourth edition, 1960, reprinted (1968).
  • R. Lidl and H. Niederreiter, Finite Fields Encyclopedia of math. and Its Appl. Vol. 20, Addison Wesley Publ. Co., Reading, Mass., 1983, xx+755 pp.; reprint, Cambridge Univ. press, Cambridge, 1997.
  • R. Norrie, University of St. Andrews 500th Anniversary Memorial Volume Edinburgh, Scotland (1911), 87--89.
  • B. Scholz, Bemerkung zu einem Beweis von Wieferich. Jber. Deutsch. Math. Verein. 58 Abt. 1 (1955), 45--48.
  • L. N. Vaserstein, Sums of cubes in polynomial rings. Math. of Comp 56 No. 193 (1991), 349--357.
  • L. N. Vaserstein, Ramsey's theorem and the Waring's problem for algebras over fields. Proceedings of workshop ``The Arithmetic of Function Fields" 1991, Ohio State University, Walter de Gruyter Verlag, (1992), 435--442.
  • A. Wieferich, Uber die Darstellung der Zahlen als Summen von Biquadraten. Math. Ann. 66 (1909), 106--108.