## Experimental Mathematics

- Experiment. Math.
- Volume 18, Issue 4 (2009), 499-508.

### Rationality of Moduli Spaces of Plane Curves of Small Degree

Christian Böhning, Hans-Christian Graf von Bothmer, and Jakob Kröker

#### Abstract

We prove that the moduli space $C(d)$ of plane curves of degree $d$ (with respect to projective equivalence) is rational except possibly if $d= 6, 7, 8, 11, 12, 14, 15, 16, 18, 20, 23, 24, 26, 32, 48$.

#### Article information

**Source**

Experiment. Math., Volume 18, Issue 4 (2009), 499-508.

**Dates**

First available in Project Euclid: 25 November 2009

**Permanent link to this document**

https://projecteuclid.org/euclid.em/1259158510

**Mathematical Reviews number (MathSciNet)**

MR2583546

**Zentralblatt MATH identifier**

1184.14025

**Subjects**

Primary: 14E08: Rationality questions [See also 14M20] 14M20: Rational and unirational varieties [See also 14E08] 14L24: Geometric invariant theory [See also 13A50]

**Keywords**

Rationality moduli spaces plane curves group quotients

#### Citation

Böhning, Christian; von Bothmer, Hans-Christian Graf; Kröker, Jakob. Rationality of Moduli Spaces of Plane Curves of Small Degree. Experiment. Math. 18 (2009), no. 4, 499--508. https://projecteuclid.org/euclid.em/1259158510