Experimental Mathematics

Experimental Determination of Apéry-like Identities for $\zeta(2n+2)$

David H. Bailey, Jonathan M. Borwein, and David M. Bradley

Full-text: Open access

Abstract

We document the discovery of two generating functions for $\zeta(2n+2)$, analogous to earlier work for $\zeta(2n+1)$ and $\zeta(4n+3)$, initiated by Koecher and pursued further by Borwein, Bradley, and others.

Article information

Source
Experiment. Math., Volume 15, Issue 3 (2006), 281-290.

Dates
First available in Project Euclid: 5 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.em/1175789759

Mathematical Reviews number (MathSciNet)
MR2264467

Zentralblatt MATH identifier
1204.11136

Subjects
Primary: 11Y60: Evaluation of constants
Secondary: 11M06: $\zeta (s)$ and $L(s, \chi)$

Keywords
Riemann zeta function central binomial coefficients series acceleration hypergeometric series

Citation

Bailey, David H.; Borwein, Jonathan M.; Bradley, David M. Experimental Determination of Apéry-like Identities for $\zeta(2n+2)$. Experiment. Math. 15 (2006), no. 3, 281--290. https://projecteuclid.org/euclid.em/1175789759


Export citation