Abstract
In this note I describe a computational study of the successive maxima of the relative sum-of-divisors function $\rho(n):=\sigma(n)/n$. These maxima occur at superabundant and colossally abundant numbers, and I also study the density of these numbers. The values are compared with the known maximal order $e^\gamma\loglog{n}$; theorems of Robin and Lagarias relate these data to a condition equivalent to the Riemann Hypothesis. It is thus interesting to see how close these conditions come to being violated.
Citation
Keith Briggs. "Abundant Numbers and the Riemann Hypothesis." Experiment. Math. 15 (2) 251 - 256, 2006.
Information