Experimental Mathematics

The Iwasawa invariants and the higher K-groups associated to real quadratic fields

Hiroki Sumida-Takahashi

Full-text: Open access

Abstract

Using fast algorithms, we compute the Iwasawa invariants of {\small $\Bbb{Q}(\sqrt{f},\zeta_p)$} in the range {\small $1 < f < 200$} and {\small $3 \le p < 100,000$}. From these computational results, we obtain concrete information on the higher {\small $K$}-groups of the ring of integers of {\small $\Bbb{Q}(\sqrt{f})$}.

Article information

Source
Experiment. Math., Volume 14, Issue 3 (2005), 307-316.

Dates
First available in Project Euclid: 3 October 2005

Permanent link to this document
https://projecteuclid.org/euclid.em/1128371756

Mathematical Reviews number (MathSciNet)
MR2172709

Zentralblatt MATH identifier
1082.11071

Subjects
Primary: 11R23: Iwasawa theory 11R70: $K$-theory of global fields [See also 19Fxx]

Keywords
Iwasawa invariant K-group Vandiver's conjecture Greenberg's conjecture

Citation

Sumida-Takahashi, Hiroki. The Iwasawa invariants and the higher K -groups associated to real quadratic fields. Experiment. Math. 14 (2005), no. 3, 307--316. https://projecteuclid.org/euclid.em/1128371756


Export citation