Open Access
2020 The limiting behavior of isotonic and convex regression estimators when the model is misspecified
Eunji Lim
Electron. J. Statist. 14(1): 2053-2097 (2020). DOI: 10.1214/20-EJS1714

Abstract

We study the asymptotic behavior of the least squares estimators when the model is possibly misspecified. We consider the setting where we wish to estimate an unknown function $f_{*}:(0,1)^{d}\rightarrow \mathbb{R}$ from observations $(X,Y),(X_{1},Y_{1}),\cdots ,(X_{n},Y_{n})$; our estimator $\hat{g}_{n}$ is the minimizer of $\sum _{i=1}^{n}(Y_{i}-g(X_{i}))^{2}/n$ over $g\in \mathcal{G}$ for some set of functions $\mathcal{G}$. We provide sufficient conditions on the metric entropy of $\mathcal{G}$, under which $\hat{g}_{n}$ converges to $g_{*}$ as $n\rightarrow \infty $, where $g_{*}$ is the minimizer of $\|g-f_{*}\|\triangleq \mathbb{E}(g(X)-f_{*}(X))^{2}$ over $g\in \mathcal{G}$. As corollaries of our theorem, we establish $\|\hat{g}_{n}-g_{*}\|\rightarrow 0$ as $n\rightarrow \infty $ when $\mathcal{G}$ is the set of monotone functions or the set of convex functions. We also make a connection between the convergence rate of $\|\hat{g}_{n}-g_{*}\|$ and the metric entropy of $\mathcal{G}$. As special cases of our finding, we compute the convergence rate of $\|\hat{g}_{n}-g_{*}\|^{2}$ when $\mathcal{G}$ is the set of bounded monotone functions or the set of bounded convex functions.

Citation

Download Citation

Eunji Lim. "The limiting behavior of isotonic and convex regression estimators when the model is misspecified." Electron. J. Statist. 14 (1) 2053 - 2097, 2020. https://doi.org/10.1214/20-EJS1714

Information

Received: 1 July 2019; Published: 2020
First available in Project Euclid: 6 May 2020

zbMATH: 07210995
MathSciNet: MR4094468
Digital Object Identifier: 10.1214/20-EJS1714

Subjects:
Primary: 62G08 , 62G20
Secondary: 62G10

Keywords: consistency , Convergence rates , convex regression , isotonic regression , model misspecification , tests for misspecification

Vol.14 • No. 1 • 2020
Back to Top