Electronic Journal of Statistics

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, and Thierry Klein

Full-text: Open access


The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.

Article information

Electron. J. Statist., Volume 14, Number 1 (2020), 1962-2008.

Received: December 2019
First available in Project Euclid: 28 April 2020

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62M30: Spatial processes
Secondary: 62F12: Asymptotic properties of estimators

Covariance parameters asymptotic normality consistency weak dependence random fields increasing-domain asymptotics

Creative Commons Attribution 4.0 International License.


Bachoc, François; Betancourt, José; Furrer, Reinhard; Klein, Thierry. Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes. Electron. J. Statist. 14 (2020), no. 1, 1962--2008. doi:10.1214/20-EJS1712. https://projecteuclid.org/euclid.ejs/1588039327

Export citation


  • [1] P. Abrahamsen. A review of Gaussian random fields and correlation functions. Technical report, Norwegian Computing Center, 1997.
  • [2] A. Alegría, S. Caro, M. Bevilacqua, E. Porcu, and J. Clarke. Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere., Spatial Statistics, 22:388–402, 2017.
  • [3] E. Anderes. On the consistent separation of scale and variance for Gaussian random fields., The Annals of Statistics, 38:870–893, 2010.
  • [4] J.-M. Azaïs, F. Bachoc, T. Klein, A. Lagnoux, and T. M. N. Nguyen. Semi-parametric estimation of the variogram of a Gaussian process with stationary increments., arXiv :1806.03135, 2018.
  • [5] J.-M. Azaïs and M. Wschebor., Level Sets and Extrema of Random Processes and Fields. John Wiley & Sons, 2009.
  • [6] F. Bachoc. Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecification., Computational Statistics and Data Analysis, 66:55–69, 2013.
  • [7] F. Bachoc. Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes., Journal of Multivariate Analysis, 125:1–35, 2014.
  • [8] F. Bachoc. Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case., Bernoulli, 24(2) :1531–1575, 2018.
  • [9] F. Bachoc, K. Ammar, and J. Martinez. Improvement of code behavior in a design of experiments by metamodeling., Nuclear Science and Engineering, 183(3):387–406, 2016.
  • [10] F. Bachoc, G. Bois, J. Garnier, and J. Martinez. Calibration and improved prediction of computer models by universal Kriging., Nuclear Science and Engineering, 176(1):81–97, 2014.
  • [11] F. Bachoc, B. Broto, F. Gamboa, and J.-M. Loubes. Gaussian field on the symmetric group: Prediction and learning., Electronic Journal of Statistics, 14:503–546, 2020.
  • [12] F. Bachoc and R. Furrer. On the smallest eigenvalues of covariance matrices of multivariate spatial processes., Stat, 5(1):102–107, 2016.
  • [13] F. Bachoc, F. Gamboa, J.-M. Loubes, and N. Venet. A Gaussian process regression model for distribution inputs., IEEE Transactions on Information Theory, 64(10) :6620–6637, 2018.
  • [14] F. Bachoc, A. Lagnoux, and T. M. N. Nguyen. Cross-validation estimation of covariance parameters under fixed-domain asymptotics., Journal of Multivariate Analysis, 160:42–67, 2017.
  • [15] F. Bachoc, D. Preinerstorfer, and L. Steinberger. Uniformly valid confidence intervals post-model-selection., The Annals of Statistics, 48(1):440–463, 2020.
  • [16] J. M. Bates and C. W. Granger. The combination of forecasts., Journal of the Operational Research Society, 20(4):451–468, 1969.
  • [17] M. Bevilacqua, T. Faouzi, R. Furrer, and E. Porcu. Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics., The Annals of Statistics, 47(2):828–856, 2019.
  • [18] P. Billingsley., Convergence of Probability Measures. Wiley, New York, 1968.
  • [19] T. Cacoullos. On upper and lower bounds for the variance of a function of a random variable., The Annals of Probability, pages 799–809, 1982.
  • [20] J.-P. Chiles and P. Delfiner., Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, 2009.
  • [21] N. Cressie., Statistics for Spatial Data. John Wiley & Sons, 1993.
  • [22] N. Cressie and S. Lahiri. The asymptotic distribution of REML estimators., Journal of Multivariate Analysis, 45:217–233, 1993.
  • [23] P. Doukhan., Mixing, Properties and Examples. Lecture Notes in Statistics. Springer-Verlag, New York, 1994.
  • [24] J. Du, H. Zhang, and V. Mandrekar. Fixed-domain asymptotic properties of tapered maximum likelihood estimators., The Annals of Statistics, 37 :3330–3361, 2009.
  • [25] O. Dubrule. Cross validation of Kriging in a unique neighborhood., Mathematical Geology, 15:687–699, 1983.
  • [26] R. M. Dudley., Real Analysis and Probability. Cambridge University Press, 2002.
  • [27] L. Fahrmeir. Maximum likelihood estimation in misspecified generalized linear models., Statistics, 21(4):487–502, 1990.
  • [28] R. Furrer, F. Bachoc, and J. Du. Asymptotic properties of multivariate tapering for estimation and prediction., Journal of Multivariate Analysis, 149:177–191, 2016.
  • [29] T. Gneiting and M. Schlather. Stochastic models that separate fractal dimension and the hurst effect., SIAM Review, 46(2):269–282, 2004.
  • [30] I. Ibragimov and Y. Rozanov., Gaussian Random Processes. Springer-Verlag, New York, 1978.
  • [31] J. Istas and G. Lang. Quadratic variations and estimation of the local Hölder index of a Gaussian process., Annales de l’Institut Henri Poincaré, 33:407–436, 1997.
  • [32] N. Jenish and I. R. Prucha. Central limit theorems and uniform laws of large numbers for arrays of random fields., Journal of Econometrics, 150(1):86–98, 2009.
  • [33] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black box functions., Journal of Global Optimization, 13:455–492, 1998.
  • [34] C. Kaufman and B. Shaby. The role of the range parameter for estimation and prediction in geostatistics., Biometrika, 100:473–484, 2013.
  • [35] F. Lavancier and P. Rochet. A general procedure to combine estimators., Computational Statistics & Data Analysis, 94:175–192, 2016.
  • [36] K. Mardia and R. Marshall. Maximum likelihood estimation of models for residual covariance in spatial regression., Biometrika, 71:135–146, 1984.
  • [37] G. Matheron., La Théorie des Variables Régionalisées et ses Applications. Fasicule 5 in Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau. Ecole Nationale Supérieure des Mines de Paris, 1970.
  • [38] M. H. Neumann. A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics., ESAIM: Probability and Statistics, 17:120–134, 2013.
  • [39] R. Paulo, G. Garcia-Donato, and J. Palomo. Calibration of computer models with multivariate output., Computational Statistics and Data Analysis, 56 :3959–3974, 2012.
  • [40] C. Rasmussen and C. Williams., Gaussian Processes for Machine Learning. The MIT Press, Cambridge, 2006.
  • [41] J. Sacks, W. Welch, T. Mitchell, and H. Wynn. Design and analysis of computer experiments., Statistical Science, 4:409–423, 1989.
  • [42] M. B. Salem, F. Bachoc, O. Roustant, F. Gamboa, and L. Tomaso. Gaussian process based dimension reduction for goal-oriented sequential design., SIAM/ASA Journal on Uncertainty Quantification, 7(4) :1369–1397, 2019.
  • [43] T. Santner, B. Williams, and W. Notz., The Design and Analysis of Computer Experiments. Springer, New York, 2003.
  • [44] B. A. Shaby and D. Ruppert. Tapered covariance: Bayesian estimation and asymptotics., Journal of Computational and Graphical Statistics, 21(2):433–452, 2012.
  • [45] M. Stein. Asymptotically efficient prediction of a random field with a misspecified covariance function., Annals of Statistics, 16:55–63, 1988.
  • [46] M. Stein. Bounds on the efficiency of linear predictions using an incorrect covariance function., Annals of Statistics, 18 :1116–1138, 1990.
  • [47] M. Stein. Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure., Annals of Statistics, 18:850–872, 1990.
  • [48] M. Stein., Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag, New York, 1999.
  • [49] A. W. Van der Vaart. Maximum likelihood estimation under a spatial sampling scheme., Annals of Statistics, 24(5) :2049–2057, 1996.
  • [50] A. W. Van der Vaart., Asymptotic Statistics, volume 3. Cambridge University Press, 2000.
  • [51] D. Wang and W.-L. Loh. On fixed-domain asymptotics and covariance tapering in Gaussian random field models., Electronic Journal of Statistics, 5:238–269, 2011.
  • [52] H. White. Maximum likelihood estimation of misspecified models., Econometrica, 50(1):1–25, 1982.
  • [53] G. Xu and M. G. Genton. Tukey g-and-h random fields., Journal of the American Statistical Association, 112(519) :1236–1249, 2017.
  • [54] W. Xu and M. L. Stein. Maximum likelihood estimation for a smooth Gaussian random field model., SIAM/ASA Journal on Uncertainty Quantification, 5(1):138–175, 2017.
  • [55] Y. Yan and M. G. Genton. Gaussian likelihood inference on data from trans-Gaussian random fields with Matérn covariance function., Environmetrics, 29(5-6): e2458, 2018.
  • [56] Z. Ying. Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process., Journal of Multivariate Analysis, 36:280–296, 1991.
  • [57] Z. Ying. Maximum likelihood estimation of parameters under a spatial sampling scheme., Annals of Statistics, 21 :1567–1590, 1993.
  • [58] H. Zhang. Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics., Journal of the American Statistical Association, 99:250–261, 2004.
  • [59] H. Zhang and Y. Wang. Kriging and cross validation for massive spatial data., Environmetrics, 21:290–304, 2010.