Electronic Journal of Statistics

Univariate mean change point detection: Penalization, CUSUM and optimality

Daren Wang, Yi Yu, and Alessandro Rinaldo

Full-text: Open access

Abstract

The problem of univariate mean change point detection and localization based on a sequence of $n$ independent observations with piecewise constant means has been intensively studied for more than half century, and serves as a blueprint for change point problems in more complex settings. We provide a complete characterization of this classical problem in a general framework in which the upper bound $\sigma ^{2}$ on the noise variance, the minimal spacing $\Delta $ between two consecutive change points and the minimal magnitude $\kappa $ of the changes, are allowed to vary with $n$. We first show that consistent localization of the change points is impossible in the low signal-to-noise ratio regime $\frac{\kappa \sqrt{\Delta }}{\sigma }\preceq \sqrt{\log (n)}$. In contrast, when $\frac{\kappa \sqrt{\Delta }}{\sigma }$ diverges with $n$ at the rate of at least $\sqrt{\log (n)}$, we demonstrate that two computationally-efficient change point estimators, one based on the solution to an $\ell _{0}$-penalized least squares problem and the other on the popular wild binary segmentation algorithm, are both consistent and achieve a localization rate of the order $\frac{\sigma ^{2}}{\kappa ^{2}}\log (n)$. We further show that such rate is minimax optimal, up to a $\log (n)$ term.

Article information

Source
Electron. J. Statist., Volume 14, Number 1 (2020), 1917-1961.

Dates
Received: June 2019
First available in Project Euclid: 28 April 2020

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1588039326

Digital Object Identifier
doi:10.1214/20-EJS1710

Keywords
Change point detection minimax optimality $\ell _{0}$-penalization CUSUM statistics binary segmentation

Rights
Creative Commons Attribution 4.0 International License.

Citation

Wang, Daren; Yu, Yi; Rinaldo, Alessandro. Univariate mean change point detection: Penalization, CUSUM and optimality. Electron. J. Statist. 14 (2020), no. 1, 1917--1961. doi:10.1214/20-EJS1710. https://projecteuclid.org/euclid.ejs/1588039326


Export citation

References

  • Aston, J. A. D. and Kirch, C. (2014). Efficiency of change point tests in high dimensional settings., arXiv preprint arXiv:1409.1771.
  • Aue, A., Hömann, S., Horváth, L. and Reimherr, M. (2009). Break detection in the covariance structure of multivariate nonlinear time series models., The Annals of Statistics 37 4046-4087.
  • Avanesov, V. and Buzun, N. (2016). Change-point detection in high-dimensional covariance structure., arXiv preprint arXiv:1610.03783.
  • Baranowski, R., Chen, Y. and Fryzlewicz, P. (2016). Narrowest-Over-Threshold detection of multiple change-points and change-point-like feature., arXiv preprint arXiv:1609.00293.
  • Boysen, L., Kempe, A., Liebscher, V., Munk, A. and Wittich, O. (2009). Consistencies and rates of convergence of jump-penalized least squares estimators., The Annals of Statistics 37 157–183.
  • Chan, H. P. and Walther, G. (2013). Detection with the scan and the average likelihood ratio., Statistica Sinica 1 409-428.
  • Cho, H. (2015). Change-point detection in panel data via double cusum statistic., Electronic Journal of Statistics in press.
  • Cho, H. and Fryzlewicz, P. (2015). Multiple change-point detection for high-dimensional time series via Sparsified Binary Segmentation., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77 475-507.
  • Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2006). Structural break estimation for nonstationary time series models., Journal of the American Statistical Association 101 223-239.
  • Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses., Annals of Statistics 124–152.
  • Dümbgen, L. and Walther, G. (2008). Multiscale inference about a density., The Annals of Statistics 36 1758–1785.
  • Eichinger, B. and Kirch, C. (2018). A MOSUM procedure for the estimation of multiple random change points., Bernoulli 24 526–564.
  • Enikeeva, F., Munk, A. and Werner, F. (2018). Bump detection in heterogeneous Gaussian regression., Bernoulli 24 1266–1306.
  • Fan, Z. and Guan, L. (2017). Approximate $l_0$-penalized estimation of piecewise-constant signals on graphs., arXiv preprint arXiv:1703.01421.
  • Frick, K., Munk, A. and Sieling, H. (2014). Multiscale change point inference., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 495-580.
  • Friedrich, F., Kempe, A., Liebscher, V. and Winkler, G. (2008). Complexity penalized M-estimation: Fast computation., Journal of Computational and Graphical Statistics 17 201–204.
  • Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection., The Annals of Statistics 42 2243–2281.
  • Gao, C., Han, F. and Zhang, C. H. (2017). Minimax risk bounds for piecewise constant models., arXiv preprint arXiv:1705.06386.
  • Gibberd, A. J. and Roy, S. (2017). Multiple changepoint estimation in high-dimensional Gaussian graphical models., arXiv preprint arXiv:1712.05786.
  • James, B., James, K. L. and Siegmund, D. (1987). Tests for a change-point., Biometrika 74 71-83.
  • Jeng, X. J., Cai, T. T. and Li, H. (2012). Simultaneous discovery of rare and common segment variants., Biometrika 100 157–172.
  • Jirak, M. (2015). Uniform change point tests in high dimension., The Annals of Statistics 43 2451-2483.
  • Killick, R., Fearnhead, P. and Eckley, I. A. (2012). Optimal detection of changepoints with a linear computational cost., Journal of the American Statistical Association 107 1590-1598.
  • Lavielle, M. (1999). Detection of multiple changes in a sequence of dependent variables., Stochastic Processes and their Applications 83 79-102.
  • Lavielle, M. and Moulines, E. (2000). Least-squares estimation of an unknown number of shifts in a time series., Journal of Time Series Analysis 21 33-59.
  • Li, H., Guo, Q. and Munk, A. (2017). Multiscale change-point segmentation: Beyond step functions., arXiv preprint arXiv:1708.03942.
  • Liebscher, V. and Winkler, G. (1999). A Potts model for segmentation and jump-detection. In, Proceedings S4G International Conference on Stereology, Spatial Statistics and Stochastic Geometry, Prague 21.
  • Maidstone, R., Hocking, T., Rigaill, G. and Fearnhead, P. (2017). On optimal multiple changepoint algorithms for large data., Statistics and Computing 27 519–533.
  • Page, E. S. (1954). Continuous inspection schemes., Biometrika 41 100-115.
  • Rigaill, G. (2010). Pruned dynamic programming for optimal multiple change-point detection., arXiv preprint arXiv:1004.0887.
  • Rinaldo, A. (2009). Properties and refinements of the fused lasso., The Annals of Statistics 37 2292-2952.
  • Scott, A. J. and Knott, M. (1974). A cluster analysis method for grouping means in the analysis of variance., Biometrics 507–512.
  • Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005). Sparsity and smoothness via the fused lasso., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 91-108.
  • Tickle, S. O., Eckley, I. A., Fearnhead, P. and Haynes, K. (2018). Parallelisation of a Common Changepoint Detection Method., arXiv preprint arXiv:1810.03591.
  • Tsybakov, A. B. (2009)., Introduction to Nonparametric Estimation. Springer.
  • Venkatraman, E. S. (1992). Consistency results in multiple change-point problems, PhD thesis, Stanford, University.
  • Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices., arXiv preprint arXiv:1011.3027.
  • Vostrikova, L. (1981). Detection of the disorder in multidimensional random-processes., Doklady Akademii Nauk SSSR 259 270–274.
  • Wald, A. (1945). Sequential tests of statistical hypotheses., The Annals of Mathematical Statistics 16 117-186.
  • Wang, T. and Samworth, R. J. (2018). High-dimensional changepoint estimation via sparse projection., Journal of the Royal Statistical Society: Series B (Statistical Methodology).
  • Wang, D., Yu, Y. and Rinaldo, A. (2017). Optimal Covariance Change Point Detection in High Dimension., arXiv preprint arXiv:1712.09912.
  • Wang, D., Yu, Y. and Rinaldo, A. (2018). Optimal Change Point Detection and Localization in Sparse Dynamic Networks., arXiv preprint arXiv:1809.09602.
  • Yao, Y. C. (1988). Estimating the number of change-points via Schwarz’ criterion., Statistics & Probability Letters 6 181–189.
  • Yao, Y.-C. and Au, S.-T. (1989). Least-squares estimation of a stop function., Sankhyā: The Indian Journal of Statistics, Series A 370-381.
  • Yao, Y. C. and Davis, R. A. (1986). The asymptotic behavior of the likelihood ratio statistic for testing a shift in mean in a sequence of independent normal variates., Sankhyā: The Indian Journal of Statistics, Series A 339–353.
  • Yu, B. (1997)., Festschrift for Lucien Le Cam 423 Assouad, Fano, and Le Cam, 435. Springer Science & Business Media.