Electronic Journal of Statistics

Consistency of the maximum likelihood and variational estimators in a dynamic stochastic block model

Léa Longepierre and Catherine Matias

Full-text: Open access


We consider a dynamic version of the stochastic block model, in which the nodes are partitioned into latent classes and the connection between two nodes is drawn from a Bernoulli distribution depending on the classes of these two nodes. The temporal evolution is modeled through a hidden Markov chain on the nodes memberships. We prove the consistency (as the number of nodes and time steps increase) of the maximum likelihood and variational estimators of the model parameters, and obtain upper bounds on the rates of convergence of these estimators. We also explore the particular case where the number of time steps is fixed and connectivity parameters are allowed to vary.

Article information

Electron. J. Statist., Volume 13, Number 2 (2019), 4157-4223.

Received: April 2019
First available in Project Euclid: 22 October 2019

Permanent link to this document

Digital Object Identifier

Primary: 62F12: Asymptotic properties of estimators

Maximum likelihood estimation dynamic network dynamic stochastic block model variational estimation temporal network

Creative Commons Attribution 4.0 International License.


Longepierre, Léa; Matias, Catherine. Consistency of the maximum likelihood and variational estimators in a dynamic stochastic block model. Electron. J. Statist. 13 (2019), no. 2, 4157--4223. doi:10.1214/19-EJS1624. https://projecteuclid.org/euclid.ejs/1571709693

Export citation


  • Bartolucci, F., Marino, M. F. and Pandolfi, S. (2018). Dealing with Reciprocity in Dynamic Stochastic Block Models., Comput. Stat. Data Anal. 123 86–100.
  • Becker, A. and Holzmann, H. (2018). Nonparametric Identification in the Dynamic Stochastic Block Model., IEEE Transactions on Information Theory 65 4335–4344.
  • Bickel, P., Choi, D., Chang, X. and Zhang, H. (2013). Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels., Ann. Statist. 41 1922–1943.
  • Boucheron, S., Lugosi, G. and Massart, P. (2013)., Concentration Inequalities: A Nonasymptotic Theory of Independence. OUP Oxford.
  • Bubeck, S. (2010). Jeux de bandits et fondations du clustering, PhD thesis, Université Lille, 1.
  • Celisse, A., Daudin, J.-J. and Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model., Electron. J. Statist. 6 1847–1899.
  • Chung, K.-M., Lam, H., Liu, Z. and Mitzenmacher, M. (2012). Chernoff-Hoeffding bounds for Markov chains: generalized and simplified. In, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012) (C. Dürr and T. Wilke, eds.). Leibniz International Proceedings in Informatics (LIPIcs) 14 124–135. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.
  • Daudin, J. J., Picard, F. and Robin, S. (2008). A mixture model for random graphs., Statistics and Computing 18 173–183.
  • Gao, C., Lu, Y. and Zhou, H. H. (2015). Rate-optimal graphon estimation., Ann. Statist. 43 2624–2652.
  • Gaucher, S. and Klopp, O. (2019). Maximum Likelihood Estimation of Sparse Networks with Missing Observations Technical Report, arXiv:1902.10605.
  • Han, Q., Xu, K. and Airoldi, E. (2015). Consistent estimation of dynamic and multi-layer block models. In, International Conference on Machine Learning 1511–1520.
  • Ho, Q., Song, L. and Xing, E. P. (2011). Evolving cluster mixed-membership blockmodel for time-varying networks. In, Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR: W&CP 15.
  • Holland, P. W., Laskey, K. B. and Leinhardt, S. (1983). Stochastic blockmodels: First steps., Social Networks 5 109–137.
  • Holme, P. (2015). Modern temporal network theory: a colloquium., The European Physical Journal B 88 234.
  • Klopp, O., Tsybakov, A. B. and Verzelen, N. (2017). Oracle inequalities for network models and sparse graphon estimation., Ann. Statist. 45 316–354.
  • Lauritzen, S. L. (1996)., Graphical models. Oxford Statistical Science Series 17. The Clarendon Press, Oxford University Press, New York.
  • Lei, J. and Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models., Ann. Statist. 43 215–237.
  • Liu, F., Choi, D., Xie, L. and Roeder, K. (2018). Global spectral clustering in dynamic networks., Proceedings of the National Academy of Sciences 115 927–932.
  • Mariadassou, M. and Matias, C. (2015). Convergence of the groups posterior distribution in latent or stochastic block models., Bernoulli 21 537–573.
  • Massart, P. (2007)., Concentration inequalities and model selection. Lecture Notes in Mathematics 1896. Springer, Berlin.
  • Matias, C. and Miele, V. (2017). Statistical clustering of temporal networks through a dynamic stochastic block model., J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 1119–1141.
  • Paul, S. and Chen, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel., Electron. J. Statist. 10 3807–3870.
  • Pensky, M. (2019). Dynamic network models and graphon estimation., Ann. Statist. 47 2378–2403.
  • Pensky, M., Zhang, T. et al. (2019). Spectral clustering in the dynamic stochastic block model., Electronic Journal of Statistics 13 678–709.
  • Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel., Ann. Statist. 39 1878–1915.
  • Xing, E. P., Fu, W. and Song, L. (2010). A state-space mixed membership blockmodel for dynamic network tomography., Ann. Appl. Stat. 4 535–566.
  • Xu, K. (2015). Stochastic Block Transition Models for Dynamic Networks. In, Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR: W&CP 38.
  • Xu, K. S. and Hero, A. O. (2014). Dynamic stochastic blockmodels for time-evolving social networks., IEEE Journal of Selected Topics in Signal Processing 8 552–562.
  • Yang, T., Chi, Y., Zhu, S., Gong, Y. and Jin, R. (2011). Detecting communities and their evolutions in dynamic social networks– a Bayesian approach., Machine Learning 82 157–189.
  • Zhang, X., Moore, C. and Newman, M. E. J. (2017). Random graph models for dynamic networks., The European Physical Journal B 90 200.
  • Zreik, R., Latouche, P. and Bouveyron, C. (2016). The dynamic random subgraph model for the clustering of evolving networks., Computational Statistics.