Electronic Journal of Statistics

Contraction and uniform convergence of isotonic regression

Fan Yang and Rina Foygel Barber

Full-text: Open access

Abstract

We consider the problem of isotonic regression, where the underlying signal $x$ is assumed to satisfy a monotonicity constraint, that is, $x$ lies in the cone $\{x\in \mathbb{R}^{n}:x_{1}\leq \dots\leq x_{n}\}$. We study the isotonic projection operator (projection to this cone), and find a necessary and sufficient condition characterizing all norms with respect to which this projection is contractive. This enables a simple and non-asymptotic analysis of the convergence properties of isotonic regression, yielding uniform confidence bands that adapt to the local Lipschitz properties of the signal.

Article information

Source
Electron. J. Statist., Volume 13, Number 1 (2019), 646-677.

Dates
Received: April 2018
First available in Project Euclid: 16 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1550286095

Digital Object Identifier
doi:10.1214/18-EJS1520

Zentralblatt MATH identifier
07038000

Subjects
Primary: 62G08: Nonparametric regression 62G07: Density estimation

Keywords
Isotonic regression contraction data-adaptive band convergence rates density estimation

Rights
Creative Commons Attribution 4.0 International License.

Citation

Yang, Fan; Barber, Rina Foygel. Contraction and uniform convergence of isotonic regression. Electron. J. Statist. 13 (2019), no. 1, 646--677. doi:10.1214/18-EJS1520. https://projecteuclid.org/euclid.ejs/1550286095


Export citation

References

  • [1] Fadoua Balabdaoui, Hanna Jankowski, Marios Pavlides, Arseni Seregin, and Jon Wellner. On the grenander estimator at zero., Statistica Sinica, 21(2):873, 2011.
  • [2] Richard E Barlow, David J Bartholomew, JM Bremner, and H Daniel Brunk., Statistical inference under order restrictions: The theory and application of isotonic regression. Wiley New York, 1972.
  • [3] Lucien Birgé. Estimating a density under order restrictions: Nonasymptotic minimax risk., The Annals of Statistics, pages 995 –1012, 1987.
  • [4] Lucien Birgé and Pascal Massart. Rates of convergence for minimum contrast estimators., Probability Theory and Related Fields, 97(1):113–150, 1993.
  • [5] Lev M Bregman. The method of successive projection for finding a common point of convex sets(theorems for determining common point of convex sets by method of successive projection)., Soviet Mathematics, 6:688–692, 1965.
  • [6] Hugh D Brunk., Estimation of isotonic regression. University of Missouri-Columbia, 1969.
  • [7] Chris Carolan and Richard Dykstra. Asymptotic behavior of the grenander estimator at density flat regions., Canadian Journal of Statistics, 27(3):557–566, 1999.
  • [8] Eric Cator. Adaptivity and optimality of the monotone least-squares estimator., Bernoulli, 17(2):714–735, 2011.
  • [9] Sabyasachi Chatterjee, Adityanand Guntuboyina, Bodhisattva Sen, et al. On risk bounds in isotonic and other shape restricted regression problems., The Annals of Statistics, 43(4) :1774–1800, 2015.
  • [10] Mathias Drton and Caroline Klivans. A geometric interpretation of the characteristic polynomial of reflection arrangements., Proceedings of the American Mathematical Society, 138(8) :2873–2887, 2010.
  • [11] Lutz Dümbgen. Optimal confidence bands for shape-restricted curves., Bernoulli, 9(3):423–449, 2003.
  • [12] Cécile Durot, Vladimir N Kulikov, and Hendrik P Lopuhaä. The limit distribution of the $l_\infty $-error of grenander-type estimators., The Annals of Statistics, pages 1578–1608, 2012.
  • [13] Theo Gasser, Lothar Sroka, and Christine Jennen-Steinmetz. Residual variance and residual pattern in nonlinear regression., Biometrika, pages 625–633, 1986.
  • [14] Ulf Grenander. On the theory of mortality measurement: part ii., Scandinavian Actuarial Journal, 1956(2):125–153, 1956.
  • [15] Piet Groeneboom. Estimating a monotone density., Department of Mathematical Statistics, (R 8403):1–14, 1984.
  • [16] Shih-Ping Han. A successive projection method., Mathematical Programming, 40(1-3):1–14, 1988.
  • [17] Hanna Jankowski. Convergence of linear functionals of the grenander estimator under misspecification., The Annals of Statistics, 42(2):625–653, 2014.
  • [18] Mary Meyer and Michael Woodroofe. On the degrees of freedom in shape-restricted regression., Annals of Statistics, pages 1083–1104, 2000.
  • [19] BLS Prakasa Rao. Estimation of a unimodal density., Sankhyā: The Indian Journal of Statistics, Series A, pages 23–36, 1969.
  • [20] John Rice. Bandwidth choice for nonparametric regression., The Annals of Statistics, pages 1215–1230, 1984.
  • [21] Tim Robertson, Farrol T Wright, and Richard L Dykstra. Order restricted statistical inference, 1988.
  • [22] Sara Van de Geer. Estimating a regression function., The Annals of Statistics, pages 907–924, 1990.
  • [23] Sara Van de Geer. Hellinger-consistency of certain nonparametric maximum likelihood estimators., The Annals of Statistics, pages 14–44, 1993.
  • [24] Yazhen Wang and KS Chen. The l2risk of an isotonic estimate., Communications in Statistics-Theory and Methods, 25(2):281–294, 1996.
  • [25] Farrol T Wright. The asymptotic behavior of monotone regression estimates., The Annals of Statistics, 9(2):443–448, 1981.
  • [26] Cun-Hui Zhang. Risk bounds in isotonic regression., The Annals of Statistics, 30(2):528–555, 2002.