Electronic Journal of Statistics

Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields

Hermine Biermé, Elena Di Bernardino, Céline Duval, and Anne Estrade

Full-text: Open access


In the present paper we study three geometrical characteristics for the excursion sets of a two-dimensional stationary isotropic random field. First, we show that these characteristics can be estimated without bias if the considered field satisfies a kinematic formula, this is for instance the case of fields given by a function of smooth Gaussian fields or of some shot noise fields. By using the proposed estimators of these geometric characteristics, we describe some inference procedures for the estimation of the parameters of the field. An extensive simulation study illustrates the performances of each estimator. Then, we use the Euler characteristic estimator to build a test to determine whether a given field is Gaussian or not, when compared to various alternatives. The test is based on a sparse information, i.e., the excursion sets for two different levels of the field to be tested. Finally, the proposed test is adapted to an applied case, synthesized 2D digital mammograms.

Article information

Electron. J. Statist., Volume 13, Number 1 (2019), 536-581.

Received: May 2018
First available in Project Euclid: 14 February 2019

Permanent link to this document

Digital Object Identifier

Primary: 60G60: Random fields 62F12: Asymptotic properties of estimators
Secondary: 62F03: Hypothesis testing 60G10: Stationary processes

Test of Gaussianity Gaussian and shot-noise fields excursion sets level sets Euler characteristic crossings

Creative Commons Attribution 4.0 International License.


Biermé, Hermine; Di Bernardino, Elena; Duval, Céline; Estrade, Anne. Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields. Electron. J. Statist. 13 (2019), no. 1, 536--581. doi:10.1214/19-EJS1530. https://projecteuclid.org/euclid.ejs/1550134834

Export citation


  • [1] R. J. Adler and J. E. Taylor., Random fields and geometry. Springer Monographs in Mathematics. Springer, New York, 2007.
  • [2] R. J. Adler and J. E. Taylor., Topological complexity of smooth random functions, volume 2019 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Lectures from the 39th Probability Summer School held in Saint-Flour, 2009, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].
  • [3] J. M. Azaïs and M. Wschebor., Level sets and extrema of random processes and fields. John Wiley & Sons, 2009.
  • [4] F. Baccelli and B. Błaszczyszyn., Stochastic Geometry and Wireless Networks, Volume I - Theory, volume 3, No 3–4 of Foundations and Trends in Networking. NoW Publishers, 2009.
  • [5] C. Berzin. Estimation of Local Anisotropy Based on Level Sets., ArXiv e-prints :1801.03760, January 2018.
  • [6] H. Biermé and A. Desolneux. On the perimeter of excursion sets of shot noise random fields., The Annals of Probability, 44(1):521–543, 2016.
  • [7] H. Biermé and A. Desolneux. Mean Geometry for 2D random fields: level perimeter and level total curvature integrals. Preprint hal -01370902, July, 2017.
  • [8] A. Bulinski, E. Spodarev, and F. Timmermann. Central limit theorems for the excursion set volumes of weakly dependent random fields., Bernoulli, 18(1):100–118, 2012.
  • [9] E. M Cabaña. Affine processes: a test of isotropy based on level sets., SIAM Journal on Applied Mathematics, 47(4):886–891, 1987.
  • [10] B Casaponsa, B Crill, L Colombo, L Danese, J Bock, A Catalano, A Bonaldi, S Basak, L Bonavera, A Coulais, et al. Planck 2015 results: XVI. Isotropy and statistics of the CMB., 2016.
  • [11] S.N. Chiu, D. Stoyan, W.S. Kendall, and J. Mecke., Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley, 2013.
  • [12] E. Di Bernardino, A. Estrade, and J. R. León. A test of Gaussianity based on the Euler Characteristic of excursion sets., Electronic Journal of Statistics, 11(1):843–890, 2017.
  • [13] B. Ebner, N. Henze, M. A. Klatt, and K. Mecke. Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images., Electronic Journal of Statistics, 12(2) :2873–2904, 2018.
  • [14] T.W. Epps. Testing that a stationary time series is Gaussian., The Annals of Statistics, pages 1683–1698, 1987.
  • [15] H. Federer. Curvature measures., Transactions of the American Mathematical Society, 93(3):418–491, 1959.
  • [16] J. Fournier. Identification and isotropy characterization of deformed random fields through excursion sets., Advances in Applied Probrobability, 50:706–725, 2018.
  • [17] J. R. Gott, W. N. Colley, C-G Park, C. Park, and C. Mugnolo. Genus topology of the cosmic microwave background from the WMAP 3-year data., Monthly Notices of the Royal Astronomical Society, 377(4) :1668–1678, 2007.
  • [18] J. R. Gott, D. C. Hambrick, M. S. Vogeley, J. Kim, C. Park, Y-Y. Choi, R. Cen, J. P. Ostriker, and K. Nagamine. Genus topology of structure in the Sloan Digital Sky Survey: Model testing., The Astrophysical Journal, 675(1):16, 2008.
  • [19] D. Hug, G. Last, and M. Schulte. Second-order properties and central limit theorems for geometric functionals of Boolean models., The Annals of Applied Probability, 26(1):73–135, 2016.
  • [20] M. Kratz and S. Vadlamani. Central limit theorem for Lipschitz–Killing curvatures of excursion sets of Gaussian random fields., Journal of Theoretical Probability, 31(3) :1729–1758, 2017.
  • [21] R. Lachièze-Rey. Shot-noise excursions and non-stabilizing Poisson functionals., ArXiv e-prints 1712.01558, December 2017.
  • [22] Z. Li, A. Desolneux, S. Muller, and A. K. Carton. A novel 3D stochastic solid breast texture model for x-ray breast imaging. In Anders Tingberg, Kristina Lång, and Pontus Timberg, editors, Breast Imaging, pages 660–667, Cham, 2016. Springer International Publishing.
  • [23] G. Lindgren. Spectral moment estimation by means of level crossings., Biometrika, 61(2):401–418, 1974.
  • [24] G. Lindgren. Wave analysis by slepian models., Probabilistic engineering mechanics, 15(1):49–57, 2000.
  • [25] M. S Longuet-Higgins. The statistical analysis of a random, moving surface., Philosophical Transactions of the Royal Society A, 249(966):321–387, 1957.
  • [26] D. Müller. A central limit theorem for Lipschitz–Killing curvatures of gaussian excursions., Journal of Mathematical Analysis and Applications, 452(2) :1040–1081, 2017.
  • [27] A. Nieto-Reyes, J. A. Cuesta-Albertos, and F. Gamboa. A random-projection based test of Gaussianity for stationary processes., Computational Statistics & Data Analysis, 75:124–141, 2014.
  • [28] U. Pantle, V. Schmidt, and E. Spodarev. On the estimation of integrated covariance functions of stationary random fields., Scandinavian Journal of Statistics, 37(1):47–66, 2010.
  • [29] T. R. Reddy, S. Vadlamani, and D. Yogeshwaran. Central limit theorem for exponentially quasi-local statistics of spin models on cayley graphs., Journal of Statistical Physics, 173:941-984, 2018.
  • [30] K. Sato., Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original, Revised edition of the 1999 English translation.
  • [31] J. Schmalzing and K. M. Górski. Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps., Monthly Notices of the Royal Astronomical Society, 297(2):355–365, June 1998.
  • [32] R. Schneider and W. Weil., Stochastic and integral geometry. Probability and its Applications. Springer-Verlag, Berlin, 2008.
  • [33] E. Spodarev. Limit theorems for excursion sets of stationary random fields. In, Modern stochastics and applications, volume 90 of Springer Optim. Appl., pages 221–241. Springer, Cham, 2014.
  • [34] D. Stoyan and H. Stoyan., Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley series in probability and mathematical statistics: Applied probability and statistics. Wiley, 1994.
  • [35] C. Thäle. 50 years sets with positive reach - a survey., Surveys in Mathematics and its Applications, 3:123–165, 2008.
  • [36] K. J. Worsley. Local maxima and the expected Euler characteristic of excursion sets of $\chi^2,\ F$ and $t$ fields., Advances in Applied Probability, 26(1):13–42, 1994.
  • [37] M. Wschebor., Surfaces aléatoires: mesure géométrique des ensembles de niveau, volume 1147. Springer, 2006.