Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 13, Number 1 (2019), 94-119.
Exact adaptive confidence intervals for linear regression coefficients
Peter Hoff and Chaoyu Yu
Abstract
We propose an adaptive confidence interval procedure (CIP) for the coefficients in the normal linear regression model. This procedure has a frequentist coverage rate that is constant as a function of the model parameters, yet provides smaller intervals than the usual interval procedure, on average across regression coefficients. The proposed procedure is obtained by defining a class of CIPs that all have exact $1-\alpha $ frequentist coverage, and then selecting from this class the procedure that minimizes a prior expected interval width. We describe an adaptive approach for estimating the prior distribution from the data, so that the potential risk of a poorly specified prior is reduced. The resulting adaptive confidence intervals maintain exact non-asymptotic $1-\alpha $ coverage if two conditions are met - that the design matrix is full rank (which will be known) and that the errors are normally distributed (which can be checked empirically). No assumptions on the unknown parameters are necessary to maintain exact coverage. Additionally, in a “$p$ growing with $n$” asymptotic scenario, this adaptive FAB procedure is asymptotically Bayes-optimal among $1-\alpha $ frequentist CIPs.
Article information
Source
Electron. J. Statist., Volume 13, Number 1 (2019), 94-119.
Dates
Received: June 2018
First available in Project Euclid: 4 January 2019
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1546570943
Digital Object Identifier
doi:10.1214/18-EJS1517
Mathematical Reviews number (MathSciNet)
MR3896147
Zentralblatt MATH identifier
07003259
Subjects
Primary: 62J05: Linear regression
Keywords
Empirical Bayes frequentist coverage ridge regression shrinkage sparsity
Rights
Creative Commons Attribution 4.0 International License.
Citation
Hoff, Peter; Yu, Chaoyu. Exact adaptive confidence intervals for linear regression coefficients. Electron. J. Statist. 13 (2019), no. 1, 94--119. doi:10.1214/18-EJS1517. https://projecteuclid.org/euclid.ejs/1546570943

