Open Access
2018 Intensity approximation for pairwise interaction Gibbs point processes using determinantal point processes
Jean-François Coeurjolly, Frédéric Lavancier
Electron. J. Statist. 12(2): 3181-3203 (2018). DOI: 10.1214/18-EJS1477
Abstract

The intensity of a Gibbs point process is usually an intractable function of the model parameters. For repulsive pairwise interaction point processes, this intensity can be expressed as the Laplace transform of some particular function. Baddeley and Nair (2012) developped the Poisson-saddlepoint approximation which consists, for basic models, in calculating this Laplace transform with respect to a homogeneous Poisson point process. In this paper, we develop an approximation which consists in calculating the same Laplace transform with respect to a specific determinantal point process. This new approximation is efficiently implemented and turns out to be more accurate than the Poisson-saddlepoint approximation, as demonstrated by some numerical examples.

References

1.

A. Baddeley and G. Nair. Fast approximation of the intensity of Gibbs point processes., Electronic Journal of Statistics, 6 :1155–1169, 2012. MR2988442 1268.60063 10.1214/12-EJS707 euclid.ejs/1340974139A. Baddeley and G. Nair. Fast approximation of the intensity of Gibbs point processes., Electronic Journal of Statistics, 6 :1155–1169, 2012. MR2988442 1268.60063 10.1214/12-EJS707 euclid.ejs/1340974139

2.

A. Baddeley, E. Rubak, and R. Turner., Spatial Point Patterns: Methodology and Applications with R. CRC Press, 2015. 1357.62001A. Baddeley, E. Rubak, and R. Turner., Spatial Point Patterns: Methodology and Applications with R. CRC Press, 2015. 1357.62001

3.

C. A. N. Biscio and F. Lavancier. Quantifying repulsiveness of determinantal point processes., Bernoulli, 22(4) :2001–2028, 2016. 1343.60058 10.3150/15-BEJ718 euclid.bj/1462297673C. A. N. Biscio and F. Lavancier. Quantifying repulsiveness of determinantal point processes., Bernoulli, 22(4) :2001–2028, 2016. 1343.60058 10.3150/15-BEJ718 euclid.bj/1462297673

4.

J.-F. Coeurjolly, J. Møller, and R. Waagepetersen. A tutorial on Palm distribution for spatial point processes., to appear in International Statistical Review, 2017. MR3723609 10.1111/insr.12205J.-F. Coeurjolly, J. Møller, and R. Waagepetersen. A tutorial on Palm distribution for spatial point processes., to appear in International Statistical Review, 2017. MR3723609 10.1111/insr.12205

5.

D.J. Daley and D. Vere-Jones., An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods. Springer, New York, second edition, 2003. 1026.60061D.J. Daley and D. Vere-Jones., An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods. Springer, New York, second edition, 2003. 1026.60061

6.

D. Dereudre. Introduction to the theory of Gibbs point processes. submitted for publication, available at arXiv :1701.08105, 2017.D. Dereudre. Introduction to the theory of Gibbs point processes. submitted for publication, available at arXiv :1701.08105, 2017.

7.

H.-O. Georgii. Canonical and grand canonical Gibbs states for continuum systems., Communications in Mathematical Physics, 48:31–51, 1976.H.-O. Georgii. Canonical and grand canonical Gibbs states for continuum systems., Communications in Mathematical Physics, 48:31–51, 1976.

8.

J.B. Hough, M. Krishnapur, Y. Peres, and B. Virag. Zeros of Gaussian Analytic Functions and Determinantal Point Processes., American Mathematical Society, 2009. 1190.60038J.B. Hough, M. Krishnapur, Y. Peres, and B. Virag. Zeros of Gaussian Analytic Functions and Determinantal Point Processes., American Mathematical Society, 2009. 1190.60038

9.

F. Lavancier, J. Møller, and E. Rubak. Determinantal point process models and statistical inference., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(4):853–877, 2015.F. Lavancier, J. Møller, and E. Rubak. Determinantal point process models and statistical inference., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(4):853–877, 2015.

10.

O. Macchi. The coincidence approach to stochastic point processes., Advances in Applied Probability, 7:83–122, 1975. 0366.60081 10.2307/1425855O. Macchi. The coincidence approach to stochastic point processes., Advances in Applied Probability, 7:83–122, 1975. 0366.60081 10.2307/1425855

11.

J. Møller and R. P. Waagepetersen., Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, 2004.J. Møller and R. P. Waagepetersen., Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, 2004.

12.

X. X. Nguyen and H. Zessin. Ergodic theorems for spatial processes., Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 48:133–158, 1979.X. X. Nguyen and H. Zessin. Ergodic theorems for spatial processes., Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 48:133–158, 1979.

13.

R development core team., A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011.R development core team., A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011.

14.

F. Riesz and B.S. Nagy., Functional Analysis. Dover Books on Mathematics Series. Dover Publications, 1990. MR1068530F. Riesz and B.S. Nagy., Functional Analysis. Dover Books on Mathematics Series. Dover Publications, 1990. MR1068530

15.

D. Ruelle., Statistical Mechanics: Rigorous Results. W.A. Benjamin, Reading, Massachusetts, 1969. 0177.57301D. Ruelle., Statistical Mechanics: Rigorous Results. W.A. Benjamin, Reading, Massachusetts, 1969. 0177.57301

16.

T. Shirai and Y. Takahashi. Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes., Journal of Functional Analysis, 2:414–463, 2003. 1051.60052 10.1016/S0022-1236(03)00171-XT. Shirai and Y. Takahashi. Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes., Journal of Functional Analysis, 2:414–463, 2003. 1051.60052 10.1016/S0022-1236(03)00171-X

17.

B. Simon., Operator theory: A comprehensive course in analysis part 4. AMS American Mathematical Society, 2015. 1334.00003B. Simon., Operator theory: A comprehensive course in analysis part 4. AMS American Mathematical Society, 2015. 1334.00003

18.

K. Stucki and D. Schuhmacher. Bounds for the probability generating functional of a Gibbs point process., Advances in applied probability, 46(1):21–34, 2014. 1295.60061 10.1239/aap/1396360101 euclid.aap/1396360101K. Stucki and D. Schuhmacher. Bounds for the probability generating functional of a Gibbs point process., Advances in applied probability, 46(1):21–34, 2014. 1295.60061 10.1239/aap/1396360101 euclid.aap/1396360101

19.

M. N. M. van Lieshout., Markov Point Processes and Their Applications. Imperial College Press, London, 2000. MR1789230 0968.60005M. N. M. van Lieshout., Markov Point Processes and Their Applications. Imperial College Press, London, 2000. MR1789230 0968.60005
Jean-François Coeurjolly and Frédéric Lavancier "Intensity approximation for pairwise interaction Gibbs point processes using determinantal point processes," Electronic Journal of Statistics 12(2), 3181-3203, (2018). https://doi.org/10.1214/18-EJS1477
Received: 1 December 2017; Published: 2018
Vol.12 • No. 2 • 2018
Back to Top