Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 12, Number 1 (2018), 461-529.
Stochastic heavy ball
Sébastien Gadat, Fabien Panloup, and Sofiane Saadane
Abstract
This paper deals with a natural stochastic optimization procedure derived from the so-called Heavy-ball method differential equation, which was introduced by Polyak in the 1960s with his seminal contribution [Pol64]. The Heavy-ball method is a second-order dynamics that was investigated to minimize convex functions $f$. The family of second-order methods recently received a large amount of attention, until the famous contribution of Nesterov [Nes83], leading to the explosion of large-scale optimization problems. This work provides an in-depth description of the stochastic heavy-ball method, which is an adaptation of the deterministic one when only unbiased evalutions of the gradient are available and used throughout the iterations of the algorithm. We first describe some almost sure convergence results in the case of general non-convex coercive functions $f$. We then examine the situation of convex and strongly convex potentials and derive some non-asymptotic results about the stochastic heavy-ball method. We end our study with limit theorems on several rescaled algorithms.
Article information
Source
Electron. J. Statist., Volume 12, Number 1 (2018), 461-529.
Dates
Received: September 2016
First available in Project Euclid: 19 February 2018
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1519030878
Digital Object Identifier
doi:10.1214/18-EJS1395
Mathematical Reviews number (MathSciNet)
MR3765604
Zentralblatt MATH identifier
06841011
Subjects
Primary: 60J70: Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) [See also 92Dxx] 35H10: Hypoelliptic equations 60G15: Gaussian processes 35P15: Estimation of eigenvalues, upper and lower bounds
Keywords
Stochastic optimization algorithms second-order methods random dynamical systems
Rights
Creative Commons Attribution 4.0 International License.
Citation
Gadat, Sébastien; Panloup, Fabien; Saadane, Sofiane. Stochastic heavy ball. Electron. J. Statist. 12 (2018), no. 1, 461--529. doi:10.1214/18-EJS1395. https://projecteuclid.org/euclid.ejs/1519030878