Electronic Journal of Statistics

Poisson intensity estimation with reproducing kernels

Seth Flaxman, Yee Whye Teh, and Dino Sejdinovic

Full-text: Open access

Abstract

Despite the fundamental nature of the inhomogeneous Poisson process in the theory and application of stochastic processes, and its attractive generalizations (e.g. Cox process), few tractable nonparametric modeling approaches of intensity functions exist, especially when observed points lie in a high-dimensional space. In this paper we develop a new, computationally tractable Reproducing Kernel Hilbert Space (RKHS) formulation for the inhomogeneous Poisson process. We model the square root of the intensity as an RKHS function. Whereas RKHS models used in supervised learning rely on the so-called representer theorem, the form of the inhomogeneous Poisson process likelihood means that the representer theorem does not apply. However, we prove that the representer theorem does hold in an appropriately transformed RKHS, guaranteeing that the optimization of the penalized likelihood can be cast as a tractable finite-dimensional problem. The resulting approach is simple to implement, and readily scales to high dimensions and large-scale datasets.

Article information

Source
Electron. J. Statist. Volume 11, Number 2 (2017), 5081-5104.

Dates
Received: June 2017
First available in Project Euclid: 15 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1513306868

Digital Object Identifier
doi:10.1214/17-EJS1339SI

Zentralblatt MATH identifier
06825041

Subjects
Primary: 62G05: Estimation 60G55: Point processes 46E22: Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [See also 47B32]

Keywords
Nonparametric statistics computational statistics spatial statistics intensity estimation reproducing kernel Hilbert space inhomogeneous Poisson processes

Rights
Creative Commons Attribution 4.0 International License.

Citation

Flaxman, Seth; Teh, Yee Whye; Sejdinovic, Dino. Poisson intensity estimation with reproducing kernels. Electron. J. Statist. 11 (2017), no. 2, 5081--5104. doi:10.1214/17-EJS1339SI. https://projecteuclid.org/euclid.ejs/1513306868


Export citation

References

  • [1] Adams, R. P., Murray, I. and MacKay, D. J. (2009). Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities., InProceedings of the 26th Annual International Conference on Machine Learning9–16. ACM.
  • [2] Bach, F. (2015). On the Equivalence between Quadrature Rules and Random, Features.arXiv:1502.06800.
  • [3] Baker, C. T. H., (1977).The Numerical Treatment of Integral Equations.Monographs on Numerical Analysis Series. Oxford: Clarendon Press.
  • [4] Bartoszynski, R., Brown, B. W., McBride, C. M. and Thompson, J. R. (1981). Some nonparametric techniques for estimating the intensity function of a cancer related nonstationary Poisson, process.The Annals of Statistics1050–1060.
  • [5] Berlinet, A. and Thomas-Agnan, C., (2004).Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer.
  • [6] Berman, M. and Diggle, P. (1989). Estimating weighted integrals of the second-order intensity of a spatial point, process.Journal of the Royal Statistical Society. Series B (Methodological)81–92.
  • [7] Brooks, M. M. and Marron, J. S. (1991). Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity, functions.Stochastic Processes and their Applications38157–165.
  • [8] Cressie, N. and Wikle, C. K., (2011).Statistics for spatio-temporal data465. Wiley.
  • [9] Csató, L., Opper, M. and Winther, O. (2001). TAP Gibbs Free Energy, Belief Propagation and Sparsity., InAdvances in Neural Information Processing Systems657–663.
  • [10] Cunningham, J. P., Shenoy, K. V. and Sahani, M. (2008). Fast Gaussian process methods for point process intensity estimation., InICML192–199. ACM.
  • [11] Diggle, P. (1985). A kernel method for smoothing point process, data.Applied Statistics138–147.
  • [12] Diggle, P. J., Moraga, P., Rowlingson, B., Taylor, B. M. et al. (2013). Spatial and spatio-temporal Log-Gaussian Cox processes: extending the geostatistical, paradigm.Statistical Science28542–563.
  • [13] Fasshauer, G. E. and McCourt, M. J. (2012). Stable evaluation of Gaussian radial basis function, interpolants.SIAM Journal on Scientific Computing34A737–A762.
  • [14] Flaxman, S., Teh, Y. W. and Sejdinovic, D. (2017). Poisson intensity estimation with reproducing kernels., InArtificial Intelligence and Statistics (AISTATS)270–279.
  • [15] Flaxman, S. R., Wilson, A. G., Neill, D. B., Nickisch, H. and Smola, A. J. (2015). Fast Kronecker inference in Gaussian processes with non-Gaussian, likelihoods.International Conference on Machine Learning.
  • [16] Gilboa, E., Saatci, Y. and Cunningham, J. (2013). Scaling Multidimensional Inference for Structured Gaussian, Processes.Pattern Analysis and Machine Intelligence, IEEE Transactions onPP1–1.
  • [17] Illian, J. B., Sørbye, S. H., Rue, H. et al. (2012). A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation, (INLA).The Annals of Applied Statistics61499–1530.
  • [18] Jones, M. C. (1993). Simple boundary correction for kernel density, estimation.Statistics and Computing3135–146.
  • [19] Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline, functions.Journal of Mathematical Analysis and Applications3382–95.
  • [20] Kingman, J. F. C., (1993).Poisson processes.Oxford Studies in Probability3. The Clarendon Press Oxford University Press, New York. Oxford Science Publications.
  • [21] Kom Samo, Y. L. and Roberts, S. (2015). Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes., InICML2227–2236.
  • [22] Lloyd, C., Gunter, T., Osborne, M. and Roberts, S. (2015). Variational Inference for Gaussian Process Modulated Poisson Processes., InICML1814–1822.
  • [23] McCullagh, P. and Møller, J. (2006). The permanental, process.Advances in applied probability873–888.
  • [24] Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox, processes.Scandinavian Journal of Statistics25451–482.
  • [25] Muandet, K., Sriperumbudur, B. and Schölkopf, B. (2014). Kernel Mean Estimation via Spectral Filtering., InAdvances in Neural Information Processing Systems.
  • [26] Oates, C. J. and Girolami, M. A. (2016). Control Functionals for Quasi-Monte Carlo Integration., InProceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9–11, 2016(A. Gretton and C. C. Robert, eds.).JMLR Workshop and Conference Proceedings5156–65. JMLR.org.
  • [27] Ramlau-Hansen, H. (1983). Smoothing Counting Process Intensities by Means of Kernel, Functions.Ann. Statist.11453–466.
  • [28] Rasmussen, C. E. and Williams, C. K., (2006).Gaussian processes for machine learning. MIT Press.
  • [29] Schölkopf, B. and Smola, A. J., (2002).Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press.
  • [30] Silverman, B. W. (1982). On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood, Method.Ann. Statist.10795–810.
  • [31] Teh, Y. W. and Rao, V. (2011). Gaussian process modulated renewal processes., InAdvances in Neural Information Processing Systems2474–2482.
  • [32] Wahba, G., (1990).Spline models for observational data59. Siam.
  • [33] Wied, D. and Weißbach, R. (2012). Consistency of the kernel density estimator: a, survey.Statistical Papers531–21.
  • [34] Williams, C. and Seeger, M. (2001). Using the Nyström method to speed up kernel machines., InAdvances in Neural Information Processing Systems682–688.
  • [35] Wilson, A. G., Dann, C. and Nickisch, H. (2015). Thoughts on Massively Scalable Gaussian, Processes.arXiv:1511.01870.
  • [36] Zhu, H., Williams, C. K., Rohwer, R. and Morciniec, M. (1997). Gaussian regression and optimal finite dimensional linear, models.Technical report.